19.已知復(fù)數(shù)z滿足|z|=2,且ω=z2-z+4,試求|ω|的最值及取得最值時的復(fù)數(shù)z.

分析 ω=z2-z+4=$(z-\frac{1}{2})^{2}$+$\frac{15}{4}$,點P$(\frac{1}{2},0)$在圓|z|=2內(nèi),并且到原點O的距離d=$\frac{1}{2}$,即可得出.

解答 解:ω=z2-z+4=$(z-\frac{1}{2})^{2}$+$\frac{15}{4}$,
點P$(\frac{1}{2},0)$在圓|z|=2內(nèi),并且到原點O的距離d=$\frac{1}{2}$,
∴當(dāng)z=2時,|ω|取得最小值6;
當(dāng)z=-2時,|ω|取得最大值10.

點評 本題考查了復(fù)數(shù)模的計算公式、圓的復(fù)數(shù)形式的方程、復(fù)數(shù)的幾何意義,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為檢驗寒假學(xué)生自主學(xué)生的效果,級部對某班50名學(xué)生各科的檢測成績進(jìn)行了統(tǒng)計,下面是物理成績的頻率分布直方圖,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的x值及平均成績;
(2)從分?jǐn)?shù)在[70,80)中選5人記為a1,a2,…,a5,從分?jǐn)?shù)在[40,50)中選3人,記為b1,b2,b3,8人組成一個學(xué)習(xí)小組現(xiàn)從這5人和3人中各選1人做為組長,求a1被選中且b1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\frac{{2}^{x}-3}{{2}^{x}+3}$的值域為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若二項式(ax-$\frac{1}{x}$)6展開式中各項系數(shù)之和為1,則x4的系數(shù)為-192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若a1=3,a2=6,且an+2=an+1-an,則a2016等于-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f(x)=2sin(ωx-$\frac{π}{3}$)(ω>0)的圖象兩相鄰對稱軸之間的距離為3,則f(0)+f(1)+f(2)+…+f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}是等差數(shù)列,首項為3,公差為2.
(1)求數(shù)列{an}的前n項和Sn;
(2)求和:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知正方形ABCD的邊長為1,點E,F(xiàn)分別為BC、CD的中點,則$\overrightarrow{AE}$•$\overrightarrow{BD}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象與二次函數(shù)y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1的圖象交于A(x1,0)和B(x2,1),則f(x)的解析式為( 。
A.f(x)=sin($\frac{1}{6}$x+$\frac{π}{3}$)B.f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$)C.f(x)=sin($\frac{π}{2}$x+$\frac{π}{3}$)D.f(x)=sin($\frac{π}{2}$x+$\frac{π}{6}$)

查看答案和解析>>

同步練習(xí)冊答案