分析 (1)運用數(shù)列的通項和前n項和的關(guān)系,即可得到數(shù)列數(shù)列{an}的通項公式;運用等差數(shù)列的通項和求和公式,求出公差,即可得到數(shù)列{bn}的通項公式;
(2)化簡cn,運用裂項相消求和,求出數(shù)列{cn}的前n和為Tn,再由數(shù)列的單調(diào)性,即可得到k的最小值;
(3)分m為奇數(shù)和m為偶數(shù),分別利用條件f(m+15)=5f(m)求出m的值,可得結(jié)論.
解答 解:(1)由題意,得$\frac{{S}_{n}}{n}=\frac{1}{2}n+\frac{11}{2}$,即Sn=$\frac{1}{2}$n2+$\frac{11}{2}$n,
故當n≥2時,an=Sn-Sn-1=($\frac{1}{2}$n2+$\frac{11}{2}$n)-[$\frac{1}{2}$(n-1)2+$\frac{11}{2}$(n-1)]=n+5,
n=1時,a1=S1=6,而當n=1時,n+5=6成立,
∴an=n+5;
又bn+2-2bn+1+bn=0,即bn+2-bn+1 =bn+1-bn,
∴{bn}為等差數(shù)列,于是$\frac{9(_{3}+_{7})}{2}$=153,
而b3=11,b7=23,
∴$d=\frac{_{7}-_{3}}{7-3}=\frac{23-11}{4}=3$,
因此,bn=b3+3(n-3)=3n+2,
即bn=3n+2;
(2)cn=$\frac{3}{(2{a}_{n}-11)(2_{n}-1)}$=$\frac{3}{[2(n+5)-11][2(3n+2)-1]}$=$\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn=c1+c2+…+cn=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}-\frac{1}{5}$)+…+($\frac{1}{2n-1}-\frac{1}{2n+1}$)]
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
Tn=$\frac{n}{2n+1}$單調(diào)遞增,由Tn<$\frac{k}{2012}$,得k>2012Tn,而Tn→$\frac{1}{2}$,故k≥1006,
∴kmin=1006;
(3)f(n)=$\left\{\begin{array}{l}{{a}_{n}(n=2l-1,l∈{N}^{*})}\\{_{n}(n=2l,n∈{N}^{*})}\end{array}\right.$,
①當m為奇數(shù)時,m+15為偶數(shù).
此時f(m+15)=3(m+15)+2=3m+47,5f(m)=5(m+5)=5m+25,
∴3m+47=5m+25,m=11;
②當m為偶數(shù)時,m+15為奇數(shù),
此時f(m+15)=m+15+5=m+20,5f(m)=5(3m+2)=15m+10,
∴m+20=15m+10,m=$\frac{5}{7}$∉N*(舍去).
綜上,存在唯一正整數(shù)m=11,使得f(m+15)=5f(m)成立.
點評 本題考查數(shù)列的通項和前n項和的關(guān)系,考查等差數(shù)列的通項和求和公式,考查裂項相消求和方法,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{10}}{5}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{10}$ | D. | $\frac{7\sqrt{10}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 大量的試驗中,出現(xiàn)正面的頻率穩(wěn)定于$\frac{1}{2}$ | |
B. | 不管試驗多少次,出現(xiàn)正面的概率始終為$\frac{1}{2}$ | |
C. | 試驗次數(shù)增多,出現(xiàn)正面的經(jīng)驗概率越接近$\frac{1}{2}$ | |
D. | 試驗次數(shù)無限增大時,出現(xiàn)正面的頻率的極限為$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com