分析 由“e度和諧函數(shù)”,得到對任意的x∈[$\frac{1}{e}$,e],都有|f(x)-g(x)|≤1,化簡整理得m-e≤lnx+$\frac{1}{x}$≤m+e,
令h(x)=lnx+$\frac{1}{x}$($\frac{1}{e}$≤x≤e),求出h(x)的最值,只要m-1不大于最小值,且m+1不小于最大值即可.
解答 解:∵函數(shù)f(x)=lnx與g(x)=$\frac{mx-1}{x}$在[$\frac{1}{e}$,e],
∴對任意的x∈[$\frac{1}{e}$,e],都有|f(x)-g(x)|≤1,
即有|lnx-$\frac{mx-1}{x}$|≤1,即m-1≤lnx+$\frac{1}{x}$≤m+1,
令h(x)=lnx+$\frac{1}{x}$($\frac{1}{e}$≤x≤e),h′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
x>1時,h′(x)>0,x<1時,h′(x)<0,
x=1時,h(x)取極小值1,也為最小值,
故h(x)在[$\frac{1}{e}$,e]上的最小值是1,最大值是e-1.
∴m-1≤1且m+1≥e-1,
∴e-2≤m≤2.
故答案為:[e-2,2].
點評 本題考查新定義及運用,考查不等式的恒成立問題,轉(zhuǎn)化為求函數(shù)的最值,注意運用導(dǎo)數(shù)求解,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com