【題目】如圖,在正方體中,E、F分別是、CD的中點,(1)證明: ;(2)求異面直線與所成的角;(3)證明:平面平面。
【答案】(1)見解析(2)(3)見解析
【解析】試題分析:(1),根據(jù)正方體的性質(zhì)可證明面,從而根據(jù)線面垂直的性質(zhì)可得;(2)取 中點 ,連接,因為 是 的中點,由是平行四邊形,可得,設(shè)與相交于點H,則是與所成的角,利用三角形相似可得與所成的角是;(3)由(1)、(2)可得, ,所以平面AED,從而得結(jié)論.
試題解析:(1)因為平面,所以;
(2)取AB中點G,連接,因為F是CD的中點,所以GF、AD平行且相等,可證是平行四邊形,所以,設(shè)與相交于點H,則是與所成的角,因為E是的中點,所以,即與所成的角是;
(3)由上可知, ,所以平面AED,從而得平面平面.
【方法點晴】本題主要考查異面直線所成的角以及線面垂直的性質(zhì)與面面垂直的判定,屬于難題.求異面直線所成的角主要方法有兩種:一是向量法,根據(jù)幾何體的特殊性質(zhì)建立空間直角坐標系后,分別求出兩直線的方向向量,再利用空間向量夾角的余弦公式求解;二是傳統(tǒng)法,利用平行四邊形、三角形中位線等方法找出兩直線成的角,再利用平面幾何性質(zhì)求解.
科目:高中數(shù)學 來源: 題型:
【題目】已知坐標平面上點與兩個定點, 的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點的直線被所截得的線段的長為 8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)當x∈[﹣1,1]時,求函數(shù)g(x)=f(x)﹣2x的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關(guān)系有經(jīng)驗公式P= t,Q= .今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(單位:萬元),
(1)試建立總利潤y(單位:萬元)關(guān)于x的函數(shù)關(guān)系式;
(2)當對甲種商品投資x(單位:萬元)為多少時?總利潤y(單位:萬元)值最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是雙曲線E: 的左、右焦點,P是雙曲線上一點, 到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當時, 的面積為,求此雙曲線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x| >0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成小塊地,在總共小塊地中,隨機選小塊地種植品種甲,另外小塊地種植品種乙.
(1)假設(shè),求第一大塊地都種植品種甲的概率;
(2)試驗時每大塊地分成小塊,即,試驗結(jié)束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量(單位:kg/hm2)如下表:
甲 | ||||||||
乙 |
分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認為應(yīng)該種植哪一品種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工程設(shè)備租賃公司為了調(diào)查A,B兩種挖掘機的出租情況,現(xiàn)隨機抽取了這兩種挖掘機各100臺,分別統(tǒng)計了每臺挖掘機在一個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:
(I)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),將頻率視為概率,求該公司一臺A型挖掘機,一臺B型挖掘機一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(II)如果A,B兩種挖掘機每臺每天出租獲得的利潤相同,該公司需要從A,B兩種挖掘機中購買一臺,請你根據(jù)所學的統(tǒng)計知識,給出建議應(yīng)該購買哪一種類型,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2 , b]上的最大值為2,則2a+b=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com