5.已知函數(shù)f(x)=2sin2x+sinxcosx+cos2x(x∈R),求函數(shù)f(x)的最小正周期及遞增區(qū)間.

分析 利用倍角公式、和差公式、平方關(guān)系可得f(x)=$\frac{\sqrt{2}}{2}$$sin(x-\frac{π}{4})$+$\frac{3}{2}$,再利用三角函數(shù)的周期公式、正弦函數(shù)的單調(diào)性即可得出.

解答 解:f(x)=2sin2x+sinxcosx+cos2x=$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x+1=$\frac{\sqrt{2}}{2}$$sin(x-\frac{π}{4})$+$\frac{3}{2}$,
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{1}$=2π.
由$-\frac{π}{2}+2kπ$≤x-$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z.
解得:2kπ-$\frac{π}{4}$≤x≤$\frac{3π}{4}$+2kπ,
∴函數(shù)f(x)的遞增區(qū)間為[2kπ-$\frac{π}{4}$,$\frac{3π}{4}$+2kπ],k∈Z.

點(diǎn)評 本題考查了倍角公式、和差公式、平方關(guān)系、三角函數(shù)的周期公式、正弦函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋擲100枚質(zhì)地均勻的硬幣,有下列一些說法:
①全部出現(xiàn)正面向上是不可能事件
②至少有1枚出現(xiàn)正面向上是必然事件
③出現(xiàn)50枚正面向上50枚正面向下是隨機(jī)事件
以上說法正確的是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.以點(diǎn)(-1,3)為圓心且與直線x-y=0相切的圓的方程為(x+1)2+(y-3)2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.圓x2+y2-2x-4y=0與直線l:y=k(x+2)(k≠0)相交于A,B兩點(diǎn),若|AB|=2,則k=$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{y-x≥0}\\{2x+2y-3≥0}\end{array}\right.$,則$\frac{y+1}{x}$的取值范圍是[$\frac{7}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知tanα=2,求:
(1)$\frac{5sin(π-α)}{sinα+4cosα}$.
(2)sin2α-3cos($\frac{π}{2}$-α)•cos(π+α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,已知cosA=-$\frac{4}{5}$.
(1)求sinA的值;
(2)求$\frac{sin2A+2si{n}^{2}A}{1+tanA}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)f(x)是定義在R上的奇函數(shù),在區(qū)間(-∞,0)上有xf′(x)+f(x)<0且f(-2)=0.則不等式f(2x)<0的解集為{x|x<-1或0<x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在以AB為直徑的半圓周上,有異于A、B的6個(gè)點(diǎn)C1、C2、C3、C4、C5、C6,線段AB上有異于A、B的四個(gè)點(diǎn)D1、D2、D3、D4.問:
(1)以這10個(gè)點(diǎn)(不包括A,B)中的3個(gè)點(diǎn)為頂點(diǎn)可作幾個(gè)三角形?其中含點(diǎn)C1的三角形有幾個(gè)?
(2)以圖中的12個(gè)點(diǎn)中的4個(gè)點(diǎn)為頂點(diǎn)可作多少個(gè)四邊形?

查看答案和解析>>

同步練習(xí)冊答案