8.第31屆夏季奧林匹克運(yùn)動(dòng)會(huì)將于2016年8月5日-21日在巴西里約熱內(nèi)盧舉行,下表是近五屆奧運(yùn)會(huì)中國代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)表(單位:枚)
屆次第26屆(亞特蘭大)  第27屆(悉尼)第28屆(雅典)  第29屆(北京)第30屆(倫敦) 
 序號(hào)x 2 3 4 5
 金牌數(shù)y 1628  3251 38
(1)某同學(xué)利用地1、2、3、5四組數(shù)據(jù)建立金牌數(shù)$\stackrel{∧}{y}$關(guān)于序號(hào)x的回歸方程為$\stackrel{∧}{y}$=5.0857x+14.514,據(jù)此回歸方程預(yù)測第31屆夏季奧運(yùn)會(huì)中國隊(duì)獲得的金牌數(shù)(計(jì)算結(jié)果四舍五入,保留整數(shù));
(2)試根據(jù)上述五組數(shù)據(jù)建立金牌數(shù)$\stackrel{∧}{y}$關(guān)于序號(hào)x的回歸方程,并據(jù)求得的回歸方程預(yù)測第31屆夏季奧林匹克運(yùn)動(dòng)會(huì)中國隊(duì)獲得的金牌數(shù)(計(jì)算結(jié)果四舍五入,保留整數(shù));
(3)利用(2)的結(jié)論填寫下表(結(jié)算結(jié)果四舍五入,保留整數(shù)):
 屆次 第26屆(亞特蘭大)  第27屆(悉尼) 第28屆(雅典)  第29屆(北京) 第30屆(倫敦)
 序號(hào)x 1 2 3 4 5
 金牌數(shù)y 16 28 32 51 38
 預(yù)測值$\stackrel{∧}{y}$     
 y-$\stackrel{∧}{y}$    
如果|y-$\stackrel{∧}{y}$|≤4,則稱(2)中的方程對該屆夏季奧林匹克運(yùn)動(dòng)會(huì)中國隊(duì)獲得金牌數(shù)是“特效”的,否則稱為“非特效”的,現(xiàn)從上述五屆奧運(yùn)會(huì)中任取三屆,記(2)中的回歸直線方程為“特效”的屆數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-x)({y}_{i}-y)}{({x}_{i}-x)^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{xy}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

分析 (1)根據(jù)回歸方程$\stackrel{∧}{y}$=5.0857x+14.514,計(jì)算x=6時(shí)$\stackrel{∧}{y}$的值;
(2)根據(jù)題中數(shù)據(jù),計(jì)算$\overline{x}$、$\overline{y}$與$\stackrel{∧}$、$\stackrel{∧}{a}$的值,得出回歸方程$\stackrel{∧}{y}$=6.7x+12.9,并計(jì)算x=6時(shí)$\stackrel{∧}{y}$的值;
(3)利用(2)的結(jié)論填表,得出|y-$\stackrel{∧}{y}$|≤4的數(shù)據(jù),求X的分布列與數(shù)學(xué)期望值.

解答 解:(1)根據(jù)金牌數(shù)$\stackrel{∧}{y}$關(guān)于序號(hào)x的回歸方程為$\stackrel{∧}{y}$=5.0857x+14.514,
所以x=6時(shí),$\stackrel{∧}{y}$=5.0857×6+14.514≈45,
據(jù)此回歸方程預(yù)測第31屆夏季奧運(yùn)會(huì)中國隊(duì)獲得的金牌數(shù)45;
(2)根據(jù)上述五組數(shù)據(jù),計(jì)算$\overline{x}$=$\frac{1}{5}$×(1+2+3+4+5)=3,
$\overline{y}$=$\frac{1}{5}$×(16+28+32+51+38)=33;
$\stackrel{∧}$=$\frac{(1-3)(16-33)+(2-3)(28-33)+(3-3)(32-33)+(4-3)(51-33)+(5-3)(38-33)}{{(1-3)}^{2}{+(2-3)}^{2}{+(3-3)}^{2}{+(4-3)}^{2}{+(5-3)}^{2}}$=6.7,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=33-6.7×3=12.9.
金牌數(shù)$\stackrel{∧}{y}$關(guān)于序號(hào)x的回歸方程$\stackrel{∧}{y}$=6.7x+12.9,
x=6,$\stackrel{∧}{y}$=6.7×6+12.9≈53,
預(yù)測第31屆夏季奧林匹克運(yùn)動(dòng)會(huì)中國隊(duì)獲得的金牌數(shù)53;
(3)利用(2)的結(jié)論填寫下表(結(jié)算結(jié)果四舍五入,保留整數(shù)):

 屆次 第26屆(亞特蘭大)  第27屆(悉尼) 第28屆(雅典)  第29屆(北京) 第30屆(倫敦)
 序號(hào)x 1 2 3 4 5
 金牌數(shù)y 16 28 32 51 38
 預(yù)測值$\stackrel{∧}{y}$19  26 33 4046 
 y-$\stackrel{∧}{y}$-3  2-1 11-8
滿足|y-$\stackrel{∧}{y}$|≤4的數(shù)據(jù)有3組,即獲得金牌數(shù)是“特效”的有3組,則X的取值可能為1,2,3;
計(jì)算P(X=1)=品數(shù)X的可能值為1,2,3.
P(X=1)=$\frac{{C}_{3}^{1}{•C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,P(X=2)=$\frac{{C}_{3}^{2}{•C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$,P(X=3)=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{1}{10}$,
所以X的分布列為
X123
P$\frac{3}{10}$$\frac{3}{5}$$\frac{1}{10}$
X的數(shù)學(xué)期望為EX=1×$\frac{3}{10}$+2×$\frac{3}{5}$+3×$\frac{1}{10}$=$\frac{9}{5}$.

點(diǎn)評(píng) 本題考查了古典概型的概率以及離散型隨機(jī)變量的分布列與數(shù)學(xué)期望的計(jì)算問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.用適當(dāng)?shù)姆椒ㄗC明下列不等式
(1)已知a,b,c是正實(shí)數(shù),證明不等式$\frac{a+b}{2}•\frac{b+c}{2}•\frac{c+a}{2}$≥abc;
(2)求證:當(dāng)a>1時(shí),$\sqrt{a+1}+\sqrt{a-1}<2\sqrt{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),⊙O:x2+y2=b2,點(diǎn)A、F分別是橢圓C的左頂點(diǎn)和左焦點(diǎn),點(diǎn)P是⊙O上的動(dòng)點(diǎn),且$\frac{{|{PA}|}}{{|{PF}|}}$為定值,則橢圓C的離心率為( 。
A.$\frac{{\sqrt{2}-1}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知x>0,y>0,z>0,且xyz=1,求證:x3+y3+z3≥xy+yz+xz.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線ax+3y-4=0和圓x2+y2+4x-1=0相切,則a的值為( 。
A.6±2$\sqrt{35}$B.2±$\sqrt{35}$C.8±$\sqrt{35}$D.1±$\sqrt{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,A(2,0)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)長軸右端點(diǎn),點(diǎn)B,C在橢圓C上,BC過橢圓O,$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,|$\overrightarrow{OC}$|=|$\overrightarrow{AC}$|,M,N為橢圓上異于A,B的不同兩點(diǎn),∠MCN的角平分線垂直于x軸.
(Ⅰ)求橢圓方程;
(Ⅱ)問是否存在實(shí)數(shù)λ,使得$\overrightarrow{MN}$=λ$\overrightarrow{BA}$,若存在,求出λ的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F,過拋物線上一點(diǎn)A(3,y)作準(zhǔn)線l作垂線,垂直為B,若△ABF為等邊三角形,則拋物線的標(biāo)準(zhǔn)方程是(  )
A.y2=$\frac{1}{2}$xB.y2=xC.y2=2xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.從0,1,2,3,4這五個(gè)數(shù)中任選三個(gè)不同的數(shù)組成一個(gè)三位數(shù),記X為所組成的三位數(shù)各位數(shù)字之和.
(1)求X是奇數(shù)的概率;
(2)求X的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某次數(shù)學(xué)小測驗(yàn)中(滿分100分),某班50名學(xué)生得分如下面的頻率分布直方圖所示:
(1)求該班本次小測驗(yàn)數(shù)學(xué)成績的平均分和中位數(shù);
(2)已知數(shù)學(xué)老師采用分層抽樣的方法在70分以上(含70分)的同學(xué)中抽取9人組成一個(gè)學(xué)習(xí)小組,再從9人中選出3人擔(dān)任組長,求組長中得分在90分以上(含90分)的人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案