12.已知直線l1:mx+y-2m-2=0,l2:x-my+2m-2=0,l1與y軸交于A點,l2與x軸交于B點,l1與l2交于D點,圓C是△ABD的外接圓.
(1)判斷△ABD的形狀并求圓C面積的最小值;
(2)若D,E是拋物線x2=2py與圓C的公共點,問:在拋物線上是否存在點P是使得△PDE是等腰三角形?若存在,求點P的個數(shù);若不存在,請說明理由.

分析 (1)由于l1⊥l2,所以△ABD是直角三角形,△ABD外接圓圓心直徑是AB,|AB|2=8(m2+1),所以外接圓C面積的最小值為2π;
(2)假設(shè)存在點P(x0,y0)滿足條件,則${x_0}^2=2{y_0}$,分當(dāng)DE是底時,當(dāng)PE是底時,當(dāng)PD是底時,分別求出相應(yīng)的點的個數(shù),問題得以解決.

解答 解:(Ⅰ)由于l1⊥l2,所以△ABD是直角三角形,
A(0,2m+2),B(2-2m,0),D(2,2),
則△ABD外接圓圓心直徑是AB,|AB|2=8(m2+1),
要使△ABD外接圓C面積最小,則|AB|2min=8,當(dāng)且僅當(dāng)m=0時成立,
所以外接圓C面積的最小值為2π.
(Ⅱ)由D(2,2)點在拋物線x2=2py上,則x2=2y,
圓C過原點,則拋物線與圓的公共點是D(2,2),E(0,0),
假設(shè)存在點P(x0,y0)滿足條件,則${x_0}^2=2{y_0}$,
(1)當(dāng)DE是底時,DE中點Q(1,1),DE中垂線方程:y=-x+2,代入拋物線x2=2y
得:x2+2x-4=0,△=20>0,所以存在兩個滿足條件的P點.
(2)當(dāng)PE是底時,PE中點M$(\frac{x_0}{2},\frac{y_0}{2})$,則DM⊥PE,
即${x_0}(\frac{x_0}{2}-2)+{y_0}(\frac{y_0}{2}-2)=0,{x_0}^3-4{x_0}-16=0$,
設(shè)f(x)=x3-4x-16,f'(x)=3x2-4,
則f(x)在$(-∞,-\frac{{2\sqrt{3}}}{3})$,$(\frac{{2\sqrt{3}}}{3},+∞)$遞增,在$(-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3})$遞減,
因為$f(-\frac{{2\sqrt{3}}}{3})<0,f(0)=-16<0$,f(3)=-1<0,f(4)=32>0,
所以f(x)在(3,4)有唯一零點,存在一個滿足條件的P點.
(3)當(dāng)PD是底時,PD中點N$(\frac{x_0}{2}+1,\frac{y_0}{2}+1)$,
則EN⊥PD,$\overrightarrow{EN}=(\frac{x_0}{2}+1,\frac{y_0}{2}+1)$,$\overrightarrow{DP}=({x_0}-2,{y_0}-2)$,$\overrightarrow{EN}•\overrightarrow{DP}=0$,
即$(\frac{{{x_0}+2}}{2})({x_0}-2)+(\frac{{{y_0}+2}}{2})({y_0}-2)=0$,
所以$(\frac{{{x_0}^2-4}}{2})+(\frac{{{x_0}^2+4}}{4})(\frac{{{x_0}^2-4}}{2})=0$,則${x_0}^2-4=0$或${x_0}^2+8=0$,
只有1解x0=-2.
綜上所述:以上零點不重復(fù),共有4個滿足條件的P點.

說明:
若只畫出以上三圖,說明DE作為底或腰的等腰三角形有4個,最多給(2分),若不完整給(1分);若只有結(jié)果4個等腰三角形,給(1分).

點評 本小題考查對含參直線方程的理解,拋物線的基礎(chǔ)知識,探究存在性問題,考查學(xué)生的數(shù)學(xué)思維能力及邏輯運(yùn)算能力,考查數(shù)形結(jié)合、函數(shù)方程、分類與整合的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{a}x-\frac{1}{2},x>2}\end{array}\right.$的值域為實數(shù)集R,則f(2$\sqrt{2}$)的取值范圍是( 。
A.(-∞,-$\frac{1}{2}$)B.(-∞,-$\frac{5}{4}$)C.[-$\frac{5}{4}$,+∞)D.[-$\frac{5}{4}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,a,b,c分別為角A,B,C所對的邊.若b=2acosC,則△ABC的形狀一定是(  )
A.等腰直角三角形B.直角三角形
C.等腰三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,點D(0,$\sqrt{3}$)在橢圓M上,過原點O作直線交橢圓M于A、B兩點,且點A不是橢圓M的頂點,過點A作x軸的垂線,垂足為H,點C是線段AH的中點,直線BC交橢圓M于點P,連接AP.
(Ⅰ)求橢圓M的方程及離心率;
(Ⅱ)求證:AB⊥AP;
(Ⅲ)設(shè)△ABC的面積與△APC的面積之比為q,求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知P為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1上一點,F(xiàn)1,F(xiàn)2是焦點,∠F1PF2取最大值時的余弦值為$\frac{1}{3}$,則此橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線y2=4x的焦點為F,點M為直線x=-2上的一動點,過點M向拋物線y2=4x的作切線,切點為B,C,以點F為圓心的圓與直線BC相切,則該圓面積的取值范圍為( 。
A.(0,π)B.(0,π]C.(0,4π)D.(0,4π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在數(shù)列{an}中,a1=$\frac{1}{3}$,前n項和Sn滿足Sn=(2n2-n)an
(1)寫出S1,S2,S3,S4
(2)歸納猜想{an}的前n項和公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.100名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖所示.
(1)估計這100名學(xué)生的數(shù)學(xué)成績落在[50,60)中的人數(shù);
(2)求頻率分布直方圖中a的值;
(3)估計這次考試的中位數(shù)n(結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C所對的邊分別為a、b、c,f (x)=sin(2x-A) (x∈R),函數(shù)f (x)的圖象關(guān)于點($\frac{π}{6}$,0)對稱.
(1)當(dāng)x∈(0,$\frac{π}{2}$)時,求f (x)的值域;
(2)若a=7且sinB+sinC=$\frac{13\sqrt{3}}{14}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案