19.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則向量$\overrightarrow$-$\overrightarrow{a}$在向量$\overrightarrow{a}$方向上的投影是-2.

分析 由|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|可得$\overrightarrow{a}•\overrightarrow$=0,計(jì)算($\overrightarrow-\overrightarrow{a}$)$•\overrightarrow{a}$,代入投影公式計(jì)算即可.

解答 解:∵|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,∴$\overrightarrow{a}⊥\overrightarrow$,即$\overrightarrow{a}•\overrightarrow$=0.
∴($\overrightarrow-\overrightarrow{a}$)$•\overrightarrow{a}$=$\overrightarrow{a}•\overrightarrow-{\overrightarrow{a}}^{2}$=-4.
∴向量$\overrightarrow$-$\overrightarrow{a}$在向量$\overrightarrow{a}$方向上的投影為|$\overrightarrow-\overrightarrow{a}$|•$\frac{(\overrightarrow-\overrightarrow{a})•\overrightarrow{a}}{|\overrightarrow-\overrightarrow{a}||\overrightarrow{a}|}$=$\frac{(\overrightarrow-\overrightarrow{a})•\overrightarrow{a}}{|\overrightarrow{a}|}$=$\frac{-4}{2}$=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}前n項(xiàng)的和為Sn,且(2n-1)Sn+1-(2n+1)Sn=4n2-1(n∈N
(1)求a1;
(2)求Sn,an;
(3)設(shè)bn=|an-30|,求{bn}的前n項(xiàng)的和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.點(diǎn)P是在△ABC的內(nèi)心,已知AB=3,AC=4,∠A=90°.存在實(shí)數(shù)λ,μ,使$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則( 。
A.λ=$\frac{1}{3}$,μ=$\frac{1}{4}$B.λ=$\frac{1}{3}$,μ=$\frac{2}{9}$C.λ=$\frac{1}{2}$,μ=$\frac{1}{3}$D.λ=$\frac{1}{4}$,μ=$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)數(shù)列{an}滿足a1=1,(1-an+1)(1+an)=1(n∈N+),則$\sum_{k=1}^{100}{({{a_k}{a_{k+1}}})}$的值為$\frac{100}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=cos2x+$\sqrt{3}$sinxcosx,
命題p:?x0∈R,f(x0)=-1,
命題q:?x∈R,f(2π+x)=f(x),
則下列命題中為假命題的是(  )
A.p∨qB.p∧qC.¬p∧qD.¬p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(x-2)lnx+1.
(1)判斷f(x)的導(dǎo)函數(shù)f′(x)在(1,2)上零點(diǎn)的個(gè)數(shù);
(2)求證f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知i為虛數(shù)單位,復(fù)數(shù)z=-$\frac{1}{3}$+$\frac{2\sqrt{2}}{3}$i的共軛復(fù)數(shù)為$\overline{z}$,則$\overline{z}$的虛部為( 。
A.$\frac{2\sqrt{2}}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$iD.-$\frac{2\sqrt{2}}{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}的各項(xiàng)均為正值,若a3+2a6=6,則a4a6的最大值為( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若|$\overrightarrow{AB}$|=1,若|$\overrightarrow{CA}$|=2|$\overrightarrow{CB}$|,則$\overrightarrow{CA}$•$\overrightarrow{CB}$的最大值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案