16.若a、b∈R,則“a2+b2≥4“是“a+b≥4”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

分析 作出不等式對應(yīng)的區(qū)域,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:a2+b2≥4表示在圓a2+b2=4的外部區(qū)域,
a+b≥4表示在直線a+b=4右上方,
由圖象知,a+b≥4表示的區(qū)域都在圓a2+b2=4的外部,
但圓a2+b2=4的外部不一定都在直線a+b=4的右上方,
比如a=0,b=3時(shí),滿足a2+b2≥4但a+b≥4不成立,
即“a2+b2≥4“是“a+b≥4”的必要不充分條件條件,
故選:B

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的關(guān)系作出對應(yīng)的圖象,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知x滿足條件2(${log}_{\frac{1}{2}}$x)2+9${log}_{\frac{1}{2}}$x+9≤0,求函數(shù)f(x)=(log2$\frac{x}{3}$)•(log2$\frac{x}{4}$)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若不等式ax2+2ax-4<0的解集為R,則實(shí)數(shù)a的取值范圍是(-4,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列求導(dǎo)運(yùn)算正確的是( 。
A.(log2x)′=$\frac{1}{xln2}$B.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$C.[sin(-x)]′=cos(-x)D.(x2cosx)′=-2sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊長,a=c,且滿足bsinA=$\sqrt{3}$acosB.點(diǎn)O為△ABC外一點(diǎn),OA=2OC=4,求平面四邊形ABCO的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且公比q=2,a3•a13=16,則a9=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線2x-y+2=0過橢圓$\frac{{x}^{2}}{A}$+$\frac{{y}^{2}}{B}$=1(A>0,B>0)的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),橢圓的方程為( 。
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1B.x2+$\frac{{y}^{2}}{5}$=1
C.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1或$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1或x2+$\frac{{y}^{2}}{5}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.各項(xiàng)均為正數(shù)的等差數(shù)列{an}中,a5a10=25,則前14項(xiàng)和S14的最小值為( 。
A.40B.70C.75D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=2$\sqrt{3}$cos2ωx+2sinωcosωx-$\sqrt{3}$(ω>0),其圖象上相鄰兩個(gè)最高點(diǎn)之間的距離為$\frac{2}{3}$π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到y(tǒng)=g(x)的圖象,求g(x)在[0,$\frac{4π}{3}$]上的單調(diào)增區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,求方程g(x)=t(0<t<2)在[0,$\frac{8}{3}$π]內(nèi)所有實(shí)根之和.

查看答案和解析>>

同步練習(xí)冊答案