20.求證:${A}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+n${A}_{n}^{n}$=${A}_{n+1}^{n+1}$-1.

分析 利用數(shù)學(xué)歸納法證明即可.

解答 證明:①當(dāng)n=1時,顯然成立;
②假設(shè)當(dāng)n=k(k≥1)時,有${A}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+k${A}_{k}^{k}$=${A}_{k+1}^{k+1}$-1,
則當(dāng)n=k+1時,${A}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+k${A}_{k}^{k}$+(k+1)${A}_{k+1}^{k+1}$=${A}_{k+1}^{k+1}$-1+(k+1)${A}_{k+1}^{k+1}$
=(k+2)${A}_{k+1}^{k+1}$-1
=${A}_{k+2}^{k+2}$-1,即當(dāng)n=k+1時命題成立;
由①②可知,${A}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+n${A}_{n}^{n}$=${A}_{n+1}^{n+1}$-1.

點評 本題考查排列及排列數(shù)公式,考查數(shù)學(xué)歸納法,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線y=kx與函數(shù)y=tanx$(-\frac{π}{2}<x<\frac{π}{2})$的圖象交于M,N(不與坐標(biāo)原點O重合) 兩點,點A的坐標(biāo)為$(-\frac{π}{2},0)$,則$(\overrightarrow{AM}+\overrightarrow{AN})•\overrightarrow{AO}$=$\frac{{π}^{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖象的一個對稱中心為($\frac{π}{4}$,0).將函數(shù)f(x)圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移$\frac{π}{2}$個單位長度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式;
(2)定義:當(dāng)函數(shù)取得最值時,函數(shù)圖象上對應(yīng)的點稱為函數(shù)的最值點,如果函數(shù)y=F(x)=$\sqrt{3}sin\frac{πx}{k}$的圖象上至少有一個最大值點和一個最小值點在圓x2+y2=k2(k>0)的內(nèi)部或圓周上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.實數(shù)$\frac{a+i}{2-i}$(a為實數(shù))的共軛復(fù)數(shù)為( 。
A.1B.-5C.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=sin(ωx+φ)(ω>0),如果存在實數(shù)x0,使得對任意的實數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為$\frac{1}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)直線x=t與兩數(shù)f(x)=x2+1,g(x)=x+lnx的圖象分別交于P,Q兩點,則|PQ|的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知P為△ABC所在平面上的一點,且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+2y$\overrightarrow{AC}$,其中x,y∈R為實數(shù),設(shè)點M(x,y),點N(1,1),當(dāng)點P落在△ABC的內(nèi)部,|MN|的取值范圍是($\frac{2\sqrt{5}}{5}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知|$\overrightarrow{a}$+$\overrightarrow$|=6,|$\overrightarrow{a}$$-\overrightarrow$|=8,求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列定積分:
(1)${∫}_{1}^{2}$(ex-$\frac{1}{x}$)dx;
(2)${∫}_{0}^{\frac{π}{2}}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)2dx.

查看答案和解析>>

同步練習(xí)冊答案