分析 利用數(shù)學(xué)歸納法證明即可.
解答 證明:①當(dāng)n=1時,顯然成立;
②假設(shè)當(dāng)n=k(k≥1)時,有${A}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+k${A}_{k}^{k}$=${A}_{k+1}^{k+1}$-1,
則當(dāng)n=k+1時,${A}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+k${A}_{k}^{k}$+(k+1)${A}_{k+1}^{k+1}$=${A}_{k+1}^{k+1}$-1+(k+1)${A}_{k+1}^{k+1}$
=(k+2)${A}_{k+1}^{k+1}$-1
=${A}_{k+2}^{k+2}$-1,即當(dāng)n=k+1時命題成立;
由①②可知,${A}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+n${A}_{n}^{n}$=${A}_{n+1}^{n+1}$-1.
點評 本題考查排列及排列數(shù)公式,考查數(shù)學(xué)歸納法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -5 | C. | -1 | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com