2.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,PA⊥底面ABCD,PA=3,AD=2,AB=4,∠ABC=60°.
(1)求證:BC⊥平面PAC;
(2)E是側(cè)棱PB上一點,記$\frac{PE}{PB}$=λ(0<λ<1),是否存在實數(shù)λ,使平面ADE與平面PAD所成的二面角為60°?若存在,求出λ的值;若不存在,請說明理由.

分析 (1)由PA⊥底面ABCD,可得PA⊥BC,在三角形ABC中,由余弦定理可得AB⊥BC.再由線面垂直的判定可得BC⊥平面PAC;
(2)以A為原點,分別以AD,AC,AP所在直線為x,y,z軸建立空間直角坐標系.求得A(0,0,0),D(2,0,0),P(0,0,3),B(-2,$2\sqrt{3}$,0).設(shè)E(x,y,z),由$\frac{PE}{PB}$=λ,得E(-2λ,$2\sqrt{3}λ$,3-3λ).求出平面ADE與平面ADP的一個法向量,結(jié)合題意可得λ=$\frac{3}{5}$.說明存在實數(shù)$λ=\frac{3}{5}$,使平面ADE與平面PAD所成的二面角為60°.

解答 (1)證明:∵PA⊥底面ABCD,∴PA⊥BC,
在三角形ABC中,由AB=4,BC=2,∠ABC=60°,
得AC2=AB2+BC2-2AB•BC•cos60°=16+4-8=12.
∴AC2+BC2=12+4=16=AB2,即AB⊥BC.
又PA∩AC=A,
∴BC⊥平面PAC;
(2)解:以A為原點,分別以AD,AC,AP所在直線為x,y,z軸建立空間直角坐標系.
∵PA=3,AD=2,AC=$2\sqrt{3}$,
∴A(0,0,0),D(2,0,0),P(0,0,3),B(-2,$2\sqrt{3}$,0).
設(shè)E(x,y,z),由$\frac{PE}{PB}$=λ,得$\overrightarrow{PE}=λ\overrightarrow{PB}$.
∴(x,y,z-3)=λ(-2,$2\sqrt{3}$,-3)=(-2λ,$2\sqrt{3}$λ,-3λ),
∴x=-2λ,y=$2\sqrt{3}λ$,z=3-3λ.
則E(-2λ,$2\sqrt{3}λ$,3-3λ).
$\overrightarrow{AD}=(2,0,0)$,$\overrightarrow{AE}$=(-2λ,$2\sqrt{3}λ$,3-3λ),$\overrightarrow{AP}=(0,0,3)$.
設(shè)平面ADE的一個法向量為$\overrightarrow{m}=({x}_{1},{y}_{1},{z}_{1})$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AD}=2{x}_{1}=0}\\{\overrightarrow{m}•\overrightarrow{AE}=-2λ{x}_{1}+2\sqrt{3}λ{y}_{1}+(3-3λ){z}_{1}=0}\end{array}\right.$,取z1=1,得$\overrightarrow{m}=(0,\frac{3λ-3}{2\sqrt{3}λ},1)$;
設(shè)平面ADP的一個法向量為$\overrightarrow{n}=(0,1,0)$,
由|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$|=|$\frac{\frac{3λ-3}{2\sqrt{3}λ}}{\sqrt{(\frac{3λ-3}{2\sqrt{3}λ})^{2}+1}×1}$|=$\frac{1}{2}$,
得5λ2-18λ+9=0,解得λ=3(舍)或λ=$\frac{3}{5}$.
∴存在實數(shù)$λ=\frac{3}{5}$,使平面ADE與平面PAD所成的二面角為60°.

點評 本題考查直線與平面平行的判定,考查空間想象能力和思維能力,訓練了利用空間向量求解二面角的平面角,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)集合A={x|x2-4x+3<0},B={x|2x-3>0},則A∩B=(  )
A.(-3,-$\frac{3}{2}$)B.($\frac{3}{2}$,3)C.(1,$\frac{3}{2}$)D.(-3,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y-3≤0}\\{x-y-3≤0}\end{array}\right.$,則x2+y2+4x的最大值為21.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=|2x-a|+|2x-4|,g(x)=|x-2|+1.
(1)a=0時,解不等式f(x)≥8;
(2)若對任意x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AC⊥BD于點O,E為線段PB上的點,且BD⊥AE.
(1)求證:PD∥平面AEC;
(2)若BC∥AD,BC=$\sqrt{2}$,AD=2$\sqrt{2}$,PD=3且AB=CD.求PC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若實數(shù)x,y滿足x2<y2,則下列不等式成立的是( 。
A.x<yB.-x<yC.$\frac{1}{x}$<$\frac{1}{y}$D.|x|<|y|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知三棱錐S-ABC的三條側(cè)棱兩兩垂直且SA=SB=SC=1,則該三棱錐的外接球的體積為$\frac{\sqrt{3}}{2}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知實數(shù)a、b是利用計算機生產(chǎn)0~1之間的均勻隨機數(shù),設(shè)事件A=“(a-1)2+(b-1)2>$\frac{1}{4}$”則事件A發(fā)生的概率為( 。
A.1-$\frac{π}{16}$B.$\frac{π}{16}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在四棱錐P-ABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(Ⅰ)求證:平面PCD⊥平面PAD;
(Ⅱ)求三棱錐P-ABC的體積;
(Ⅲ)在棱PC上是否存在點E,使得BE∥平面PAD?若存在,請確定點E的位置并證明;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案