14.計(jì)算:(-1006)0+($\frac{16}{81}$)${\;}^{-\frac{1}{4}}$+(3$\frac{3}{8}$)${\;}^{\frac{1}{3}}$.

分析 直接利用有理指數(shù)冪的運(yùn)算法則化簡求解即可.

解答 解:(-1006)0+($\frac{16}{81}$)${\;}^{-\frac{1}{4}}$+(3$\frac{3}{8}$)${\;}^{\frac{1}{3}}$
=1+$\frac{3}{2}$+$\frac{3}{2}$
=4.

點(diǎn)評 本題考查有理指數(shù)冪的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某場排球賽決賽將在甲隊(duì)與乙隊(duì)之間展開,據(jù)以往統(tǒng)計(jì),甲隊(duì)在每局比賽中勝乙隊(duì)的概率為$\frac{2}{3}$,比賽采取五局三勝制,即誰先勝三局誰就獲勝,并停止比賽,則甲隊(duì)以3:1獲勝的概率為( 。
A.$\frac{2}{3}$B.$\frac{8}{27}$C.$\frac{2}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{ax+b}{{x}^{2}+1}$是定義域在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若f(2t-2)+f(t)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)方程x2-$\sqrt{10}$x+2=0的兩根為α、β,求$lo{g}_{2}\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.圓心在(1,1)的圓截直線y=x-2所得的弦長為2$\sqrt{2}$,則這個(gè)圓的方程為(x-1)2+(y-1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.己知A(-1,4),B(3,-2),以AB為直徑的圓交直線y=x+1于M、N兩點(diǎn),則|MN|=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.用與球心距離為2的平面去截球,所得的截面面積為π,則球的表面積為(  )
A.$\frac{20π}{3}$B.20πC.12πD.100π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法正確的是( 。
A.語句“x>0”是命題
B.若命題p為真命題,命題q為假命題,則p∨q為假命題
C.若命題p:?x∈R,x2+1≥0,則$?p:?{x_0}∈R,x_0^2+1≥0$
D.若一個(gè)命題的逆命題為假,則它的否命題一定為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式組$\left\{\begin{array}{l}y≥0\\ y≥x-2\\ y≤\sqrt{x}\end{array}\right.$所圍成的封閉圖形的面積為( 。
A.$\frac{10}{3}$B.2C.4D.$\frac{17}{5}$

查看答案和解析>>

同步練習(xí)冊答案