7.用平面區(qū)域表示下列不等式組.
(1)$\left\{\begin{array}{l}{x≥y}\\{3x+4y-12<0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y+1>0}\\{x≤3}\end{array}\right.$.

分析 由題意,分別畫出不等式表示的平面區(qū)域,公共部分即為不等式組表示的平面區(qū)域.

解答 解:(1)如圖;
(2)不等式組表示的平面區(qū)域如圖:

點(diǎn)評(píng) 本題考查了不等式組表示的平面區(qū)域的畫法;關(guān)鍵是正確作出每個(gè)不等式表示的區(qū)域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)命題p:函數(shù)f(x)=x2+(a-1)x+5在(-∞,1]上是減函數(shù);
命題q:?x∈R,lg(x2+2ax+3)>0.
若p∨¬q是真命題,p∧¬q是假命題,則實(shí)數(shù)a的取值范圍是$-\sqrt{2}<a≤$-1,或$a≥\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖正四棱住ABCD-A1B1C1D1中,點(diǎn)E是A1A上的點(diǎn),M是AC、BD的交點(diǎn).
(1)若A1C∥平面EBD,求證:點(diǎn)E是AA1中點(diǎn);
(2)若AB=1,△EBD的面積S=$\sqrt{2}$,點(diǎn)F在CC1上,且FM⊥EM,求三棱錐體積VF-EBD的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列4個(gè)命題,其中正確的個(gè)數(shù)是( 。
①若“命題p∧q為真”,則“命題p∨q為真”;
②命題“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”;
②“tanx>0”是“sin2x>0”的充要條件;
④計(jì)算:9192除以100的余數(shù)是1.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.6本不同的書,按下列要求各有多少種不同的方法:
(1)分給甲、乙、丙三人,每人兩本;
(2)分為三份,每份兩本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在擲均勻硬幣的試驗(yàn)中,以下對(duì)“大數(shù)定理”的理解錯(cuò)誤的是( 。
A.大量的試驗(yàn)中,出現(xiàn)正面的頻率穩(wěn)定于$\frac{1}{2}$
B.不管試驗(yàn)多少次,出現(xiàn)正面的概率始終為$\frac{1}{2}$
C.試驗(yàn)次數(shù)增多,出現(xiàn)正面的經(jīng)驗(yàn)概率越接近$\frac{1}{2}$
D.試驗(yàn)次數(shù)無限增大時(shí),出現(xiàn)正面的頻率的極限為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知|$\overrightarrow{a}$|=8,|$\overrightarrow$|=6,則<$\overrightarrow{a}$,$\overrightarrow$>=150°,則$\overrightarrow{a}$$•\overrightarrow$=( 。
A.-24B.24C.-24$\sqrt{3}$D.24$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點(diǎn).
(1)證明:平面AEF⊥平面B1BCC1;
(2)若D為AB中點(diǎn),∠CA1D=45°且AB=2,求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.[A]已知數(shù)列{an}滿足a4=20,an+1=2an-n+1(n∈N+).
(1)計(jì)算a1,a2,a3,根據(jù)計(jì)算結(jié)果,猜想an的表達(dá)式(不必證明);
(2)若數(shù)列{an}的前n項(xiàng)和Sn>2016,求n的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案