分析 根據(jù)“萊布尼茲調(diào)和三角形”的特征,每個數(shù)是它下一個行左右相鄰兩數(shù)的和,得出將楊暉三角形中的每一個數(shù)Cnr都換成分?jǐn)?shù)$\frac{1}{(n+1){C}_{n}^{r}}$,就得到一個萊布尼茲三角形,從而可求出第n(n≥4)行倒數(shù)第四個數(shù)(從右往左數(shù)).
解答 解:將楊暉三角形中的每一個數(shù)Cnr都換成分?jǐn)?shù)$\frac{1}{(n+1){C}_{n}^{r}}$,
就得到萊布尼茲三角形.
∵楊暉三角形中第n(n≥4)行倒數(shù)第四個數(shù)(從右往左數(shù))Cn-13,
則“萊布尼茲調(diào)和三角形”第n(n≥4)行倒數(shù)第四個數(shù)(從右往左數(shù))是$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.
故答案為:$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.
點評 本題考查歸納推理,解題的關(guān)鍵是通過觀察分析歸納各數(shù)的關(guān)系,考查學(xué)生的觀察分析和歸納能力,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a | B. | 2a2-2b2-4b | C. | 4a或2a2-2b2-4b | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com