8.平面外ABC的一點(diǎn)P,AP、AB、AC兩兩互相垂直,過AC的中點(diǎn)D做ED⊥面ABC,且ED=1,PA=2,AC=2,連接BP,BE,多面體B-PADE的體積是$\frac{\sqrt{3}}{3}$;
(1)畫出面PBE與面ABC的交線,說明理由;
(2)求面PBE與面ABC所成的銳二面角的大。

分析 (1)延長(zhǎng)PE交AC于F,可證F與C重合,故直線BC即為面PBE與面ABC的交線;
(2)以A為原點(diǎn),AB為x軸,AC為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出面PBE與面ABC所成的銳二面角的大。

解答 解:(1)延長(zhǎng)PE交AC于F,直線BC即為面PBE與面ABC的交線;
理由如下:
∵AP、AB、AC兩兩互相垂直,
∴PA⊥平面ABC,
∵DE⊥平面ABC,
∴DE∥PA,
∴$\frac{DF}{AF}$=$\frac{DE}{PA}=\frac{1}{2}$,
∴F與C重合.
∵C∈PE,C∈AC,PE?平面PBE,AC?平面ABC,
∴C是平面PBE和平面ABC的公共點(diǎn),
又B是平面PBE和平面ABC的公共點(diǎn),
∴BC是面PBE與面ABC的交線.
(2)∵AP、AB、AC兩兩互相垂直,
∴AB⊥平面PAC,∴VB-PADE=$\frac{1}{3}$S梯形ADEP•AB=$\frac{1}{3}$(1+2)×1×AB=$\frac{\sqrt{3}}{3}$,解得AB=$\frac{2\sqrt{3}}{3}$.
以A為原點(diǎn),AB為x軸,AC為y軸,AP為z軸,建立空間直角坐標(biāo)系,
B($\frac{2\sqrt{3}}{3}$,0,0),P(0,0,2),E(0,1,1),
$\overrightarrow{PB}$=($\frac{2\sqrt{3}}{3}$,0,2),$\overrightarrow{PE}$=(0,1,-1),
設(shè)二面角PBE的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\frac{2\sqrt{3}}{3}x+2z=0}\\{\overrightarrow{n}•\overrightarrow{PE}=y-z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(-$\sqrt{3}$,1,1),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,
∴面PBE與面ABC所成的銳二面角的大小為arccos$\frac{\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題考查了平面的性質(zhì),二面角的計(jì)算,屬于中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某同學(xué)去年寒假期間對(duì)其30位親友的飲食習(xí)慣作了一次調(diào)查,其中12位五十歲以下的親友中有4位偏愛蔬菜:18位五十歲以上的親友中有2位偏愛肉類.
(1)完成如下的2×2列聯(lián)表:
偏愛蔬菜偏受肉類合計(jì)
五十歲以下
五十歲以上
合計(jì)
(2)有多大的把握認(rèn)為“其親友的飲食習(xí)慣與年齡有關(guān)”?
(3)若要從這30位親友中抽出5人進(jìn)行有關(guān)飲食習(xí)慣方面的進(jìn)一步調(diào)查,該如何合量地進(jìn)行抽樣?
附計(jì)算公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附表:
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x) 在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是(  )
A.y=-2x+3B.y=2x-1C.y=-6x+7D.y=3x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉
的時(shí)間(分鐘)
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
總?cè)藬?shù)203644504010
將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(Ⅰ)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計(jì)
20110
合計(jì)
(Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(x2-ax-a)ex,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2-9lnx在區(qū)間[a-$\frac{1}{2}$,a+$\frac{1}{2}$]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是($\frac{1}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(1)求f($\frac{π}{4}$-α)=$\frac{3\sqrt{7}}{4}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求sinα的值;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[-π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個(gè)數(shù)且兩端的數(shù)均為$\frac{1}{n}$(n≥2),每個(gè)數(shù)是它下一行左右相鄰兩數(shù)之和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,則第n(n≥4)行倒數(shù)第四個(gè)數(shù)(從右往左數(shù))為$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案