3.已知等差數(shù)列{an}的公差d=-2,a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99的值是-82.

分析 由等差數(shù)列的性質(zhì)得a3+a6+a9+…+a99=(a1+a4+a7+…+a97)+33×2d,由此能求出結(jié)果.

解答 解:∵等差數(shù)列{an}的公差d=-2,a1+a4+a7+…+a97=50,
∴a3+a6+a9+…+a99=(a1+a4+a7+…+a97)+33×2d=50+33×2×(-2)=-82.
故答案為:-82.

點(diǎn)評(píng) 本題考查等差數(shù)列的若干項(xiàng)的和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)a為實(shí)數(shù),給出命題p:關(guān)于x的不等式(${\frac{1}{2}}$)|x-1|≥a的解集為空集,命題q:函數(shù)f(x)=$\sqrt{a{x^2}+ax+2}$的定義域?yàn)閷?shí)數(shù)集R,若命題“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.集合A={x|3≤x≤7},B={x|2<x<10},C={x|a<x<a+2}
(1)求A∪B,A∩B;
(2)若C⊆(A∪B),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)P是圓O:x2+y2=16上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=$\frac{3}{4}$|PD|.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)求過點(diǎn)(2,0)且斜率為$\frac{3}{4}$的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.取一根長(zhǎng)5米的細(xì)繩,拉直后從其中任一點(diǎn)剪斷,剪得的兩段細(xì)繩長(zhǎng)度都不小于1.5米的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.當(dāng)x>0,y>0,$\frac{1}{x}$+$\frac{4}{y}$=1時(shí),x+y的最小值為(  )
A.9B.10C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}$(a>0且a≠1)是R上的增函數(shù),則a的取值范圍是( 。
A.(0,1)B.(1,3)C.(2,3)D.$[\frac{3}{2},3)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間[0,4]上任取一實(shí)數(shù)a,使方程x2+2x+a=0有實(shí)數(shù)根的概率是(  )
A.0.25B.0.5C.0.6D.0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線2x-3y-4=0的截距式方程為( 。
A.$\frac{x}{2}$-$\frac{3y}{4}$=1B.$\frac{x}{2}$+$\frac{3y}{-4}$=1C.$\frac{x}{2}$-$\frac{y}{{\frac{4}{3}}}$=1D.$\frac{x}{2}$+$\frac{y}{{-\frac{4}{3}}}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案