19.若曲線y=ax-ln(x+1)在點(0,0)處的切線與直線2x-y-6=0平行,則a=( 。
A.0B.1C.2D.3

分析 求出函數(shù)的導數(shù),求得切線的斜率,由兩直線平行的條件:斜率相等,解方程即可得到所求值.

解答 解:y=ax-ln(x+1),y′=a-$\frac{1}{x+1}$,
∴${y}_{|x=0}^{′}$=a-1,
而直線2x-y-6=0的斜率是2,
故a-1=2,解得:a=3,
故選:D.

點評 本題考查導數(shù)的運用:求切線的斜率,考查兩直線平行的條件:斜率相等,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)y=3cosx (0≤x≤2π)的圖象和直線y=3圍成一個封閉的平面圖形,則其面積為6π..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.若an+1=2an+1(n=1,2,3,…).且a1=1.
(1)求a2,a3,a4,a5;
(2)歸納猜想通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=x3+2xf′(1),則函數(shù)f(1)=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對于P(K2≥k),當K>2.706時,就約有( 。┌盐照J為“X與Y有關系”.( 。
本題可以參考獨立性檢驗臨界值表:
P(χ2≥k00.500.400.250.150.100.050.025
k00.4550.7081.3232.0722.7063.8415.024
A.99%B.95%C.90%D.以上不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在銳角△ABC中,a,b,c分別是角A,B,C所對的邊,且$\sqrt{3}$a=2csinA.
(Ⅰ)求角C的大。
(Ⅱ)若c=$\sqrt{7}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某種產(chǎn)品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下對應數(shù)據(jù):
x24568
y3040605070
$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$
(1)求y關于x的回歸直線方程.
(2)預測廣告費支出為10(單位:百萬元)時,銷售額為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.有10塊相同巧克力,小華每天至少吃一塊,4天吃完則共有84種吃法.(用數(shù)字作答 )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知:命題p:函數(shù)f(x)=mx在(1,+∞)內(nèi)單調(diào)增;命題q:函數(shù)g(x)=xm在(1,+∞)內(nèi)單調(diào)增,命題p∨q與命題¬p兩個命題一真一假.求m的取值范圍.

查看答案和解析>>

同步練習冊答案