11.已知梯形ABCD是直角梯形,按照斜二測(cè)畫法畫出它的直觀圖A′B′C′D′(如圖所示),其中A′D′=2,B′C′=4,A′B′=1,則直角梯形DC邊的長(zhǎng)度是2$\sqrt{2}$.

分析 由已知直角梯形ABCD中,AB⊥BC,AD=A′D′=2,BC=B′C′=4,AB=2A′B′=2,由此能求出直角梯形DC邊的長(zhǎng)度.

解答 解:由已知作出梯形ABCD是直角梯形,如右圖:
∵按照斜二測(cè)畫法畫出它的直觀圖A′B′C′D′,A′D′=2,B′C′=4,A′B′=1,
∴直角梯形ABCD中,AB⊥BC,AD=A′D′=2,BC=B′C′=4,AB=2A′B′=2,
過D作DE⊥BC,交BC于E,則DE=AB=2,EC=BC-AD=4-2=2,
∴直角梯形DC邊的長(zhǎng)度為:$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查直角梯形中斜邊長(zhǎng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意斜二測(cè)畫法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,點(diǎn)E在直角三角形ABC的斜邊AB上,四邊形CDEF為正方形,已知正方形CDEF的面積等于36.設(shè)∠CAB=θ,直角三角形ABC的周長(zhǎng)L=12+$\frac{a(b+sinθ+cosθ)}{sinθcosθ}$.
(Ⅰ)求a,b的值;
(Ⅱ)求L的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各數(shù)中最小的數(shù)為( 。
A.101111(2)B.1210(3)C.112(8)D.69(12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$y={(\frac{1}{2})^x}-1$在區(qū)間[-2,1]上的值域?yàn)閇-$\frac{1}{2}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個(gè)圓錐的底面半徑為2cm,高為6cm,在其中有一個(gè)高為3cm的內(nèi)接圓柱,則圓柱的側(cè)面積為( 。
A.2πcm2B.4πcm2C.6πcm2D.12πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$|{\overrightarrow{AB}}|=|{\overrightarrow{AC}}|=2,\overrightarrow{AB}•\overrightarrow{AC}=2\sqrt{3}$,平面區(qū)域D由所有滿足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(1≤λ≤a,1≤μ≤b)的點(diǎn)P構(gòu)成,其面積為8,則4a+b的最小值為(  )
A.13B.12C.$7\sqrt{2}$D.$6\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算下列各式的值
(1)$({-2{x^{\frac{1}{4}}}{y^-}^{\frac{1}{3}}})({3{x^{-\frac{1}{2}}}{y^{\frac{2}{3}}}})({-4{x^{\frac{1}{4}}}{y^{\frac{2}{3}}}})$;
(2)(log43+log83)(log32+log92).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過直線y=2x上一點(diǎn)P作圓M:${(x-3)^2}+{(y-2)^2}=\frac{4}{5}$的兩條切線l1,l2,A,B為切點(diǎn),當(dāng)直線l1,l2關(guān)于直線y=2x對(duì)稱時(shí),則∠APB等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,正三棱錐A-BCD的側(cè)棱長(zhǎng)為2,底面BCD的邊長(zhǎng)為2$\sqrt{2}$,E,分別為BC,BD的中點(diǎn),則三棱錐A-BEF的外接球的半徑R=1,內(nèi)切球半徑r=2-$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案