A. | 80 | B. | 84 | C. | 87 | D. | 89 |
分析 由等差數(shù)列通項公式列出方程組,求出首項和公差,從而求出Sn=$\frac{{n}^{2}+13n}{4}$,由此能求出使Sn>2018的最小整數(shù)n的值.
解答 解:遞增的等差數(shù)列{an}滿足:a1+a2+a3=12,a1a2a3=63,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+d+{a}_{1}+2d=12}\\{{a}_{1}({a}_{1}+d)({a}_{1}+3d)=63}\\{d>0}\end{array}\right.$,
解得${a}_{1}=\frac{7}{2}$,d=$\frac{1}{2}$,
${S}_{n}=\frac{7}{2}n+\frac{n(n-1)}{2}×\frac{1}{2}$=$\frac{{n}^{2}+13n}{4}$,
∵Sn>2018,∴$\frac{{n}^{2}+13n}{4}$>2018,
∴n2+13n-8072>0,
解得n>$\frac{-13+\sqrt{32457}}{2}$≈83.6,
由n∈N*,∴使Sn>2018的最小整數(shù)n的值為84.
故選:B.
點評 本題考查等差數(shù)列前n項和取最小值時項數(shù)n的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 64+8π | B. | 56+12π | C. | 32+8π | D. | 48+8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤2} | B. | {x|-1<x<2} | C. | {x|x≥2或x≤-1} | D. | {x|x>2或x<-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{5}{6}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com