18.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],記f(x)=|$\overrightarrow{a}$+$\overrightarrow$|,則f(x)的最小值為( 。
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

分析 根據(jù)向量數(shù)量積的應(yīng)用,結(jié)合三角函數(shù)的單調(diào)性進行求解即可.

解答 解:∵向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),
∴|$\overrightarrow{a}$|=1,|$\overrightarrow$|=1,
$\overrightarrow{a}$•$\overrightarrow$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$)•(cos$\frac{x}{2}$,-sin$\frac{x}{2}$)
=cos$\frac{3x}{2}$cos$\frac{x}{2}$-sin$\frac{3x}{2}$sin$\frac{x}{2}$=cos($\frac{3x}{2}$+$\frac{x}{2}$)=cos2x,
∵f(x)=|$\overrightarrow{a}$+$\overrightarrow$|,
∴f2(x)=|$\overrightarrow{a}$+$\overrightarrow$|2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2$\overrightarrow{a}$•$\overrightarrow$=1+1+2cos2x=2+2cos2x,
∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$],∴2x∈[-$\frac{π}{3}$,$\frac{π}{2}$],
∴當(dāng)2x=$\frac{π}{2}$時,2+2cos2x取得最小值2+0=2,
即f(x)=$\sqrt{2+2cos2x}$的最小值為$\sqrt{2}$,
故選:C

點評 本題主要考查函數(shù)最值的求解,利用向量數(shù)量積的應(yīng)用是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+tcosα\\ y=\sqrt{3}+tsinα\end{array}$(t是參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=8cos(θ-$\frac{π}{3}$).
(1)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
(2)若曲線C1與曲線C2交于A,B兩點,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知過點(1,1)的直線l與圓C:x2+y2-4y+2=0相切,則圓C的半徑為$\sqrt{2}$,直線l的方程為x-y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖,則f($\frac{7π}{4}$)=( 。
A.-$\sqrt{3}$B.-1C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)cos(α+β)sinα-sin(α+β)cosα=$\frac{12}{13}$,且β是第四象限角,則tan$\frac{β}{2}$=(  )
A.±$\frac{2}{3}$B.±$\frac{3}{2}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.根據(jù)下列條件,求圓方程:
(1)過兩點A(1,2),B(5,6),且圓心在直線2x-y-5=0上的圓的標(biāo)準(zhǔn)方程;
(2)求與直線x+3y-8=0相切于點P(2,2),且截y軸所得弦長為2的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面內(nèi)有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點,若這n條直線把平面分成f(n)個平面區(qū)域,則f(3)=7;f(n)=$\frac{{{n^2}+n+2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=m-|x+1|,m∈R,且f(x-1)≥0的解集為[-2,2].
(Ⅰ)求m的值;
(Ⅱ)若a,b,c∈R+,且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=m,求z=a+2b+3c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow a$,$\overrightarrow b$是兩個相互垂直的單位向量,而|$\overrightarrow c$|=13,$\overrightarrow c$•$\overrightarrow a$=3,$\overrightarrow c$•$\overrightarrow b$=4,則對于任意實數(shù)t1,t2,則|$\overrightarrow c$-t1$\overrightarrow a-{t_2}$$\overrightarrow b$|的最小值是12.

查看答案和解析>>

同步練習(xí)冊答案