已知函數(shù)g(x)=x3-3x+ax2在[-1,1]上恰有兩個(gè)零點(diǎn),求a的取值范圍.
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:顯然x=0是零點(diǎn)之一,則只需函數(shù)g(x)=x2+ax-3在[-1,1]上有一個(gè)零點(diǎn)即可,結(jié)合函數(shù)g(x)過(guò)點(diǎn)(0,-3)容易列出滿(mǎn)足題意的不等式組,解之即可.
解答: 解:顯然x=0是函數(shù)f(x)在[-1,1]內(nèi)的零點(diǎn),
所以只需g(x)=x2+ax-3在[-1,1]內(nèi)有一個(gè)零點(diǎn)即可.因?yàn)間(0)=-3<0,
g(-1)≥0
g(1)<0
g(-1)<0
g(1)≥0
,
解得a≤-2或a≥2.
點(diǎn)評(píng):本題的關(guān)鍵在于發(fā)現(xiàn)0是函數(shù)的一個(gè)零點(diǎn),從而把問(wèn)題轉(zhuǎn)化為二次函數(shù)的零點(diǎn)問(wèn)題來(lái)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用秦九韶算法計(jì)算函數(shù)f(x)=3x4-2x3-6x-17,當(dāng)x=2時(shí),則f(x)的值為( 。
A、0B、2C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求導(dǎo):y=
10x-10-x
10x+10-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={(x,y)|x2+y2-2mx+m2≤4},B={(x,y)|x2+y2+2x-2my≤8-m2},若A∩B=A,則實(shí)數(shù)m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用一段長(zhǎng)為40米的籬笆圍一塊矩形綠地,矩形一邊長(zhǎng)為x米,面積為y平方米,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系,并求它的定義域.(x為自變量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法錯(cuò)誤的是(  )
A、命題p“?x∈R,ax>0(a>0且a≠1),則¬p:?x0∈R,ax0≤0
B、如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題
C、特稱(chēng)命題“?x∈R,使-2x2+x-4=0”是假命題
D、命題“若a,b都是偶數(shù),則a+b是偶數(shù)”的否命題是“若a,b都不是偶數(shù),則a+b不是偶數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿(mǎn)足條件M∪{2,3}={1,2,3}的集合M的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα>0,且sinα+cosα<0,則( 。
A、cosα>0
B、cosα<0
C、cosα=0
D、cosα符號(hào)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(a1,a2)
b
=(b1,b2)
,定義一種向量積
a
?
b
=(a1b1,a2b2)
,已知
m
=(2,
1
2
)
,
n
=(
π
3
,0)
,點(diǎn)P(x,y)在y=sinx的圖象上運(yùn)動(dòng).滿(mǎn)足
OQ
=
m
?
OP
+
n
(其中O為坐標(biāo)原點(diǎn)),則當(dāng)x∈[0,2π]時(shí),函數(shù)y=f(x)的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案