6.(1)已知(2-$\sqrt{3}$x)50=a0+a1x+a2x2+…+a50x50,求 (a0+a2+a4+…+a502-(a1+a3+a5+…+a492的值;
(2)已知(1+$\sqrt{x}{)^n}$的展開式中第9項、第10項、第11項的二項式系數(shù)成等差數(shù)列,求n.

分析 (1)分別令x=1,x=-1,代入已知的等式,化簡變形可得(a0+a2+a4+…+a502-(a1+a3+a5+…+a492的值.
(2)由條件利用(1+$\sqrt{x}{)^n}$的展開式的通項公式,可得$C_n^8+C_n^{10}=2C_n^9$,計算求得n的值.

解答 解:(1)令x=1,得${(2-\sqrt{3})^{50}}={a_0}+{a_1}+{a_2}+…+{a_{50}};①$,
令x=-1,得${(2+\sqrt{3})^{50}}={a_0}-{a_1}+{a_2}-…+{a_{50}};②$,
把①②相乘得(a0+a1+a2+a3+a4+…+a50)=(a0-a1+a2 -a3+a4+…-a49+a50
=(a0+a2+a4+…+a502-(a1+a3+a5+…+a492 =150=1.
(2)由于(1+$\sqrt{x}{)^n}$的展開式的通項公式為 ${T_{r+1}}=C_n^r{x^{\frac{r}{2}}}$,由題知$C_n^8+C_n^{10}=2C_n^9$,
即 $\frac{n!}{8!(n-8)!}$+$\frac{n!}{10!(n-10)!}$=2•$\frac{n!}{9!(n-9)!}$,化簡可的n2-37n+322=0,求得n=14,或 n=23.

點評 本題主要考查二項式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案;還考查了二項展開式的通項公式,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.若a>b,則下列結(jié)論一定正確的是( 。
A.a3>b3B.$\frac{1}{a}$<$\frac{1}$C.lga>lgbD.$\sqrt{a}$>$\sqrt$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知直線3x-2y-3=0和x+my+1=0互相平行,則它們之間的距離是(  )
A.4B.$\frac{{6\sqrt{13}}}{13}$C.$\frac{{4\sqrt{13}}}{13}$D.$\frac{{2\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=loga$\frac{1-x}{b+x}$(0<a<1)為奇函數(shù),當x∈(-1,a]時,函數(shù)f(x)的值域是(-∞,1],則實數(shù)a+b的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某小組有3名男生和2名女生,從中任選2名學生參加演講比賽,那么互斥而不對立的兩個事件是( 。
A.至少有1名男生和至少有1名女生B.恰有1名男生和恰有2名男生
C.至少有1名男生和都是女生D.至多有1名男生和都是女生

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知$\left\{{\begin{array}{l}{{x^2}+{y^2}-2x-10y+18≤0}\\{y≥|{x-a}|+5}\end{array}}$,x,y∈R,若由不等式組圍成的區(qū)域為P,設(shè)兩曲線的交點為A,B,C(a,5)且C∈P;
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)若a=0,求△ABC的面積;
(Ⅲ)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在股票市場上,投資者常參考股價(每一股的價格)的某條平滑均線的變化情況來決定買入或賣出股票.股民老張在研究股票的走勢圖時,發(fā)現(xiàn)一只股票的均線近期走得很有特點:如果按如圖所示的方式建立平面直角坐標系xOy,則股價y(元)和時間x的關(guān)系在ABC段可近似地用解析式y(tǒng)=asin(ωx+φ)+b(0<φ<π)來描述,從C點走到今天的D點,是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標志,且D點和C點正好關(guān)于直線l:x=34對稱.老張預(yù)計這只股票未來的走勢如圖中虛線所示,這里DE段與ABC段關(guān)于直線l對稱,EF段是股價延續(xù)DE段的趨勢(規(guī)律)走到這波上升行情的最高點F.現(xiàn)在老張決定取點A(0,22),點B(12,19),點D(44,16)來確定解析式中的常數(shù)a,b,ω,φ,并且求得ω=$\frac{π}{72}$
(1)請你幫老張算出a,b,φ,并回答股價什么時候見頂(即求F點的橫坐標)
(2)老張如能在今天以D點處的價格買入該股票3000股,到見頂處F點的價格全部賣出,不計其它費用,這次操作他能賺多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若0<x<1,則2x,${({\frac{1}{2}})^x}$,log2x之間的大小關(guān)系為( 。
A.2x<log2x<${({\frac{1}{2}})^x}$B.2x<${({\frac{1}{2}})^x}$<log2xC.${({\frac{1}{2}})^x}$<log2x<2xD.log2x<${({\frac{1}{2}})^x}$<2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)化簡求值:$\frac{{sin(π-α)cos(π+α)cos(\frac{3π}{2}+α)}}{cos(3π-α)sin(3π+α)}$;
(2)設(shè)sinα=-$\frac{{2\sqrt{5}}}{5}$,tanβ=$\frac{1}{3}$,-$\frac{π}{2}$<α<0,0<β<$\frac{π}{2}$,求α+β的值.

查看答案和解析>>

同步練習冊答案