12.圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的體積為( 。
A.16B.$\frac{4}{3}$C.$\frac{16}{3}$D.$\frac{8}{3}$

分析 由三視圖可知幾何體為從邊長為4的正方體切出來的三棱錐.作出直觀圖,計算各棱長求面積

解答 解:由三視圖可知幾何體為從邊長為4的正方體切出來的三棱錐A-BCD.作出直觀圖如圖所示:
其中A,C,D為正方體的頂點,B為正方體棱的中點.
∴S△ABC=$\frac{1}{2}$×2×4=4,
∴VD-ABC=$\frac{1}{3}×{S}_{△ABC}×4$=$\frac{16}{3}$;
故選:C.

點評 本題考查了不規(guī)則放置的幾何體的三視圖和面積計算,作出直觀圖是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,某市園林局準備綠化一塊直徑為BC的半圓形空地,△ABC以外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余的地方種花.若BC=a(a為定值),∠ABC=α,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2;
(1)用a,α表示S1,S2
(2)當α為何值時,$\frac{{s}_{2}}{{s}_{1}}$取得最大值,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當甲、乙兩人都參加時,他們參加社區(qū)服務(wù)的日期不相鄰,則不同的安排種數(shù)為(  )
A.1440B.3600C.5040D.5400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,某重點高中數(shù)學(xué)教師對高三年級的50名學(xué)生進行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于15小時的有22人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績不足120分的占$\frac{4}{7}$,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:
分數(shù)大于等于120分分數(shù)不足120分合 計
周做題時間不少于15小時422
周做題時間不足15小時
合 計50
(Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否有99%以上的把握認為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”;
(Ⅱ)(i)按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于120分和分數(shù)不足120分的兩組學(xué)生中抽取5名學(xué)生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
(ii)若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機抽取25人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)i是虛數(shù)單位,若$\frac{z}{i}$=$\frac{i-3}{1+i}$,則復(fù)數(shù)$\overline{z}$的虛部為(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x3+x2+ex,則曲線y=f(x)在點(0,f(0))處的切線方程是(  )
A.x+2y+1=0B.x-2y+1=0C.x+y-1=0D.x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c.若a=3,b=4,∠C=60°,則c等于( 。
A.25-12$\sqrt{3}$B.13C.$\sqrt{13}$D.$\sqrt{37}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,a,b,c分別為角A,B,C的對邊,a=1,c=2,B=60°,則△ABC的面積S=( 。
A.$\sqrt{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,(x>0)}\\{6xcosπx-1,(x≤0)}\end{array}\right.$,g(x)=kx-1,(x∈R),若函數(shù)y=f(x)-g(x)在x∈(-2,4)內(nèi)有3個零點,則實數(shù)k的取值范圍是( 。
A.(-6,4)B.[4,6)C.(5,6)∪{4}D.[5,6)∪{4}

查看答案和解析>>

同步練習(xí)冊答案