10.如圖,正方體ABCD-A1B1C1D1中,E是棱BC的中點(diǎn),F(xiàn)是側(cè)面BCC1B1上的動(dòng)點(diǎn),且A1F∥平面AD1E,則直線A1F與平面BCC1B1所成的角的正切值t構(gòu)成的集合是( 。
A.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$}B.{t|{2≤t≤2$\sqrt{3}}$}C.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$}D.{{t|{2≤t≤2$\sqrt{2}}$}

分析 設(shè)平面AD1E與直線BC交于點(diǎn)G,連接AG、EG,則G為BC的中點(diǎn).分別取B1B、B1C1的中點(diǎn)M、N,連接AM、MN、AN,可證出平面A1MN∥平面D1AE,從而得到A1F是平面A1MN內(nèi)的直線.由此將點(diǎn)F在線段MN上運(yùn)動(dòng)并加以觀察,即可得到A1F與平面BCC1B1所成角取最大值、最小值的位置,由此不難得到A1F與平面BCC1B1所成角的正切取值范圍.

解答 解:設(shè)平面AD1E與直線BC交于點(diǎn)G,連接AG、EG,則G為BC的中點(diǎn)
分別取B1B、B1C1的中點(diǎn)M、N,連接AM、MN、AN,則
∵A1M∥D1E,A1M?平面D1AE,D1E?平面D1AE,
∴A1M∥平面D1AE.同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN內(nèi)的相交直線
∴平面A1MN∥平面D1AE,
由此結(jié)合A1F∥平面D1AE,可得直線A1F?平面A1MN,即點(diǎn)F是線段MN上上的動(dòng)點(diǎn).
設(shè)直線A1F與平面BCC1B1所成角為θ
運(yùn)動(dòng)點(diǎn)F并加以觀察,可得
當(dāng)F與M(或N)重合時(shí),A1F與平面BCC1B1所成角等于∠A1MB1,此時(shí)所成角θ達(dá)到最小值,滿足tanθ=$\frac{{A}_{1}{B}_{1}}{{B}_{1}M}$=2;
當(dāng)F與MN中點(diǎn)重合時(shí),A1F與平面BCC1B1所成角達(dá)到最大值,滿足tanθ=$\frac{{A}_{1}{B}_{1}}{\frac{\sqrt{2}}{2}{B}_{1}M}$=2$\sqrt{2}$
∴A1F與平面BCC1B1所成角的正切取值范圍為[2,2$\sqrt{2}$].
故選:D.

點(diǎn)評(píng) 本題給出正方體中側(cè)面BCC1B1內(nèi)動(dòng)點(diǎn)F滿足A1F∥平面D1AE,求A1F與平面BCC1B1所成角的正切取值范圍,著重考查了正方體的性質(zhì)、直線與平面所成角、空間面面平行與線面平行的位置關(guān)系判定等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知命題p:(x-3)(x+1)<0,命題q:$\frac{x-2}{x-4}$<0,命題r:a<x<2a,其中a>0.若p∧q是r的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.甲、乙、丙、丁和戊5名學(xué)生進(jìn)行勞動(dòng)技術(shù)比賽,決出第一名到第五名的名次.甲乙兩名參賽者去詢問(wèn)成績(jī),回答者對(duì)甲說(shuō)“很遺憾,你沒(méi)有得到冠軍”;對(duì)乙說(shuō)“你當(dāng)然不會(huì)是最差的”,從上述回答分析,5人的名次排列可能有78種不同情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.不等式x2+8x<20的解集是(-10,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,將正整數(shù)排成一個(gè)三角形數(shù)陣:

按照以上排列的規(guī)律,第20行從左向右的第2個(gè)數(shù)為192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤a}\\{x≥1}\end{array}$,其中a=$\int_0^3$(x2-1)dx,則實(shí)數(shù)$\frac{y}{x+1}$的最小值為( 。
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一個(gè)三角形數(shù)表的前5行如圖,第n行的第二個(gè)數(shù)為an(n≥2,n∈N*).

(1)求a6;
(2)歸納出an+1與an的關(guān)系式(不用證明),并求出{an}(n≥2)的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a,b,c∈R,且a>b,則下列命題一定正確的是( 。
A.ac>bcB.ac2≥bc2C.$\frac{1}{a}$<$\frac{1}$D.$\frac{a}$>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖是由一些小正方體摞成的,第(1)堆有1個(gè),第(2)堆有4個(gè),第(3)堆有10個(gè)…,則第n堆有$\frac{n(n+1)(n+2)}{6}$小正方體.

查看答案和解析>>

同步練習(xí)冊(cè)答案