20.已知命題p:(x-3)(x+1)<0,命題q:$\frac{x-2}{x-4}$<0,命題r:a<x<2a,其中a>0.若p∧q是r的充分條件,求a的取值范圍.

分析 分別求出滿(mǎn)足P,q成立的x的范圍,求出p∧q的范圍,根據(jù)集合的包含關(guān)系得到關(guān)于a的不等式組,解出即可.

解答 解:由題可知,命題p:-1<x<3,
命題q:2<x<4,…..(2分)
故p∧q:2<x<3.…(4分)
根據(jù)a>0,及p∧q是r的充分條件可知:$\left\{\begin{array}{l}a≤2\\ 3≤2a\end{array}\right.$;…(8分)
解得 $\frac{3}{2}≤a≤2$,
綜上可知,a的取值范圍是$\left\{{\left.a\right|}\right.\frac{3}{2}≤a≤2\left.{\;}\right\}$.…(10分)

點(diǎn)評(píng) 本題考查了充分必要條件,考查復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義在R上的函數(shù)y=f(x)滿(mǎn)足:f(-x)=-f(x),f(1+x)=f(1-x),當(dāng)x∈[-1,1]時(shí),f(x)=x2,則f(2015)的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB=$\sqrt{2}$,AD=1,AB=2,BC=3.
(1)求證:SB⊥平面SAD;
(2)求二面角D-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖1,已知四邊形BCDE為直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A為BE的中點(diǎn).將△EDA沿AD折到△PDA位置(如圖2),連結(jié)PC,PB構(gòu)成一個(gè)四棱錐P-ABCD.

(Ⅰ)求證AD⊥PB;
(Ⅱ)若PA⊥平面ABCD.
①求二面角B-PC-D的大。
②在棱PC上存在點(diǎn)M,滿(mǎn)足$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1),使得直線AM與平面PBC所成的角為45°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知直角梯形ACEF與等腰梯形ABCD所在的平面互相垂直,EF∥AC,EF═$\frac{1}{2}$AC,EC⊥AC,AD=DC=CB=CE=$\frac{1}{2}$AB=1.
(Ⅰ)證明:BC⊥AE;
(Ⅱ)求二面角D-BE-F的余弦值;
(Ⅲ)判斷直線DF與平面BCE的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖三角形數(shù)陣中,從第三行起,每行都是1為首項(xiàng),公比為2的等比數(shù)列.求數(shù)陣的前n行各項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.化簡(jiǎn)$\frac{sin(2π-θ)cos(π+θ)cos(\frac{π}{2}+θ)cos(\frac{11π}{2}-θ)}{cos(π-θ)sin(3π-θ)sin(-π-θ)sin(\frac{9π}{2}+θ)}$的值是( 。
A.-tanθB.tanθC.-cosθD.sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)命題p:?x0∈(0,+∞),3x0+x0=$\frac{1}{2016}$;命題q:?x>0,x+$\frac{1}{x}$≥2,則下列命題為真命題的是(  )
A.p∧qB.(?p)∧qC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,正方體ABCD-A1B1C1D1中,E是棱BC的中點(diǎn),F(xiàn)是側(cè)面BCC1B1上的動(dòng)點(diǎn),且A1F∥平面AD1E,則直線A1F與平面BCC1B1所成的角的正切值t構(gòu)成的集合是(  )
A.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$}B.{t|{2≤t≤2$\sqrt{3}}$}C.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$}D.{{t|{2≤t≤2$\sqrt{2}}$}

查看答案和解析>>

同步練習(xí)冊(cè)答案