18.不等式x2+8x<20的解集是(-10,2).

分析 把不等式化為x2+8x-20<0,左邊因式分解,即可求出該不等式的解集.

解答 解:不等式x2+8x<20可化為x2+8x-20<0,
即(x+10)(x-2)<0,
解得-10<x<2;
所以該不等式的解集是(-10,2).
故答案為:(-10,2).

點(diǎn)評(píng) 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖1,已知四邊形BCDE為直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A為BE的中點(diǎn).將△EDA沿AD折到△PDA位置(如圖2),連結(jié)PC,PB構(gòu)成一個(gè)四棱錐P-ABCD.

(Ⅰ)求證AD⊥PB;
(Ⅱ)若PA⊥平面ABCD.
①求二面角B-PC-D的大;
②在棱PC上存在點(diǎn)M,滿足$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1),使得直線AM與平面PBC所成的角為45°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)命題p:?x0∈(0,+∞),3x0+x0=$\frac{1}{2016}$;命題q:?x>0,x+$\frac{1}{x}$≥2,則下列命題為真命題的是(  )
A.p∧qB.(?p)∧qC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.古希臘數(shù)學(xué)家把1,3,6,10,15,21,…叫做三角形,它有一定的規(guī)律性,第2016個(gè)三角形與第2015個(gè)三角形的差為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a<b<0,則下列不等式不成立的是( 。
A.$\frac{1}{a}>\frac{1}$B.2a>2bC.|a|>|b|D.a3<b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.關(guān)于x的不等式x2+ax-2<0在區(qū)間[1,4]上有解,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,正方體ABCD-A1B1C1D1中,E是棱BC的中點(diǎn),F(xiàn)是側(cè)面BCC1B1上的動(dòng)點(diǎn),且A1F∥平面AD1E,則直線A1F與平面BCC1B1所成的角的正切值t構(gòu)成的集合是(  )
A.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$}B.{t|{2≤t≤2$\sqrt{3}}$}C.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$}D.{{t|{2≤t≤2$\sqrt{2}}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.觀察下列式子:1+$\frac{1}{{2}^{2}}$<1+$\frac{1}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<1+$\frac{2}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<1+$\frac{3}{4}$,…,根據(jù)上述規(guī)律,第n個(gè)不等式應(yīng)該為1+$\frac{1}{{2}^{2}}$+$\frac{{1}^{\;}}{{3}^{2}}$+…+$\frac{1}{(n+1)^{2}}$<1+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=$\sqrt{2}$,AC=2,A1C1=1,$\frac{BD}{DC}$=$\frac{1}{2}$.
(1)證明:平面A1AD⊥平面BCC1B1;
(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案