3.已知tanα=-3,且α是第二象限的角.
(1)求cosα的值;
(2)求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

分析 (1)由已知利用同角三角函數(shù)基本關系式可求sinα=-3cosα,聯(lián)立sin2α+cos2α=1,結(jié)合α是第二象限的角,即可解得cosα的值;
(2)利用同角三角函數(shù)基本關系式化簡所求即可計算得解.

解答 解:(1)因為tanα=-3,且α是第二象限的角,
∴$tanα=\frac{sinα}{cosα}=-3$,
∴sinα=-3cosα.…(2分)
∵sin2α+cos2α=1,…(4分)
∵cosα<0,
∴$cosα=-\frac{{\sqrt{10}}}{10}$,…(8分)
$sinα=\sqrt{1-{{cos}^2}α}=\frac{{3\sqrt{10}}}{10}$.…(10分)
(2)因為tanα=-3
∴原式=$\frac{{(4sinα-2cosα)×\frac{1}{cosα}}}{{(5cosα+3sinα)×\frac{1}{cosα}}}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{4×(-3)-2}{5+3×(-3)}$=$\frac{7}{2}$.…(12分)

點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.設Sn為數(shù)列{an}的前項和,已知a1≠0,2an-a1=S1•Sn,n∈N+
(1)求a1,并求證數(shù)列{an}為等比數(shù)列;
(2)求數(shù)列{nan}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設P={x|x>4},Q={x|-2<x<2},則( 。
A.P⊆QB.Q⊆PC.P?∁RQD.Q⊆∁RP

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a、b 是實數(shù),則“a>b”是“a2>b2”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}{f}^{'}$(e)x+xlnx(其中,e為自然對數(shù)的底數(shù),x>0).
(Ⅰ)求f′(e);
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)是否存在整數(shù)k,使得對任意的x>0,f(x)>k(x-1)恒成立(*)若存在,寫出一個整數(shù)k,并證明(*);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若一個幾何體的三視圖如圖所示,則這個幾何體的外接球的表面積為(  )
A.34πB.$\frac{80π}{3}$C.$\frac{91}{3}π$D.114π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設當x=θ時,函數(shù)f(x)=3sinx+4cosx取得最小值,則sinθ=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若不等式組$\left\{\begin{array}{l}{x^2}-x-2>0\\ 2{x^2}+(2k+7)x+7k<0\end{array}\right.$的整數(shù)解只有-3和-2,則k的取值范圍是[-3,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=ax3+$\frac{1}{2}$x2在x=-1處取得極大值,記g(x)=$\frac{1}{f′(x)}$.程序框圖如圖所示,若輸出的結(jié)果S>$\frac{2014}{2015}$,則判斷框中可以填入的關于n的判斷條件是(  )
A.n≤2014?B.n≤2015?C.n>2014?D.n>2015?

查看答案和解析>>

同步練習冊答案