【題目】如圖,,是離心率為的橢圓的左、右頂點(diǎn),,是該橢圓的左、右焦點(diǎn),,是直線上兩個(gè)動(dòng)點(diǎn),連接和,它們分別與橢圓交于點(diǎn),兩點(diǎn),且線段恰好過(guò)橢圓的左焦點(diǎn).當(dāng)時(shí),點(diǎn)恰為線段的中點(diǎn).
(1)求橢圓的方程;
(Ⅱ)判斷以為直徑的圓與直線位置關(guān)系,并加以證明.
【答案】(Ⅰ)(Ⅱ)以為直徑的圓始終與直線相切
【解析】
(Ⅰ)由當(dāng)時(shí),點(diǎn)恰為線段的中點(diǎn),得到,再由,即可求出,得到橢圓方程;
(Ⅱ)先由題意可知直線不可能平行于軸,設(shè)的方程為:,、,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理、弦長(zhǎng)公式等,結(jié)合題中條件,即可得出結(jié)論.
解:(Ⅰ)當(dāng)時(shí),點(diǎn)恰為線段的中點(diǎn),
,又,聯(lián)立解得:,,,
橢圓的方程為.
(Ⅱ)由題意可知直線不可能平行于軸,
設(shè)的方程為:,、,
聯(lián)立得: ,
,
(*)
又設(shè),由、、三點(diǎn)共線得,
同理可得.
.
設(shè)中點(diǎn)為,則坐標(biāo)為即,
點(diǎn)到直線的距離.
故以為直徑的圓始終與直線相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用四種不同顏色給圖中的A,B,C,D,E,F六個(gè)點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且圖中每條線段的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色方法用
A.288種B.264種C.240種D.168種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人各自獨(dú)立的參加某單位面試,規(guī)定每位考生需要從編號(hào)為1-6的6道面試題中隨機(jī)抽出3道進(jìn)行面試,至少答對(duì)兩道才能合格.已知甲能答對(duì)其中3道題,乙能答對(duì)其中4道題.
(1)求甲恰好答對(duì)兩道題的概率.
(2)求甲合格且乙不合格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)專著《九章算術(shù)》中有一個(gè)“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對(duì)穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問(wèn)何日相逢?各穿幾何?”如圖的程序框圖源于這個(gè)題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為( 。
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-m(x+1)+1(m∈R).
(1)若函數(shù)f(x)的極小值為1,求實(shí)數(shù)m的值;
(2)當(dāng)x≥0時(shí),不等式恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體 ABCDEF中,四邊形ABCD是邊長(zhǎng)為2的菱形,且平面ABCD⊥平面DCE.AF∥DE,且AF=DE=2,BF=2.
(1)求證:AC⊥BE;
(2)若點(diǎn)F到平面DCE的距離為,求直線EC與平面BDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若動(dòng)點(diǎn)P到點(diǎn)F(0,1)的距離比它到直線y=﹣2的距離少1,則動(dòng)點(diǎn)P的軌跡C的方程為_____,若過(guò)點(diǎn)(2,1)作該曲線C的切線l,則切線l的方程為_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù)f(x)=ax2﹣2bx+8.
(1)設(shè)集合P={1,2,3}和Q={2,3,4,5},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間(﹣∞,2]上有零點(diǎn)且為減函數(shù)的概率?
(2)設(shè)集合P=[1,3]和Q[2,5],分別從集合P和Q中隨機(jī)取一個(gè)實(shí)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間(﹣∞,2]上有零點(diǎn)且為減函數(shù)的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線 是圓心的極坐標(biāo)為()且經(jīng)過(guò)極點(diǎn)的圓
(1)求曲線C1的極坐標(biāo)方程和C2的普通方程;
(2)已知射線分別與曲線C1,C2交于點(diǎn)A,B(點(diǎn)B異于坐標(biāo)原點(diǎn)O),求線段AB的長(zhǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com