A. | ${a_n}={({-1})^{n+1}}({2n+1})$ | B. | ${a_n}={({-1})^{n+1}}({2n-1})$ | C. | ${a_n}={({-1})^n}({2n+1})$ | D. | ${a_n}={({-1})^n}({2n-1})$ |
分析 根據(jù)已知中數(shù)列各項(xiàng)的符號(hào)是一個(gè)擺動(dòng)數(shù)列,我們可以用(-1)n-1來(lái)控制各項(xiàng)的符號(hào),再由數(shù)列1,3,5,7,9,11,…的可得數(shù)列為奇數(shù)列,為2n-1,由此可得數(shù)列的通項(xiàng)公式.
解答 解:數(shù)列1,3,5,7,9,11,…的可得數(shù)列為奇數(shù)列,為2n-1,
又∵數(shù)列所有的奇數(shù)項(xiàng)為正,偶數(shù)項(xiàng)為負(fù)
故可用(-1)n-1來(lái)控制各項(xiàng)的符號(hào),
故數(shù)列的一個(gè)通項(xiàng)公式為 ${a_n}={({-1})^{n+1}}({2n-1})$
故選:B
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是等比數(shù)列的通項(xiàng)公式,其中根據(jù)已知數(shù)列的前幾項(xiàng)分析各項(xiàng)的共同特點(diǎn)是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[2\sqrt{2}-3,\frac{56}{9}]$ | B. | $[\frac{56}{9},+∞)$ | C. | $(-∞,2\sqrt{2}-3]$ | D. | $(-∞,2\sqrt{2}-3]∪[\frac{56}{9},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $a=1,b=\sqrt{2},A={30°}$ | B. | $b=\sqrt{2},c=2,B={45°}$ | C. | a=1,b=2,c=3 | D. | a=3,b=2,A=60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 1 | C. | $\frac{1}{7}$ | D. | $\frac{1}{63}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com