分析 (Ⅰ)利用已知條件以及正弦定理求出B的正弦值,然后求角B的大;
(Ⅱ)利用周期函數(shù)的周期公式和兩角和與差的正弦函數(shù)得到f(x)=sin(2x-$\frac{π}{6}$).然后由(2x-$\frac{π}{6}$)的取值范圍來確定f(A)的取值范圍.
解答 解:(Ⅰ)由acosC+ccosA=2bcosB以及正弦定理可知,
sinAcosC+sinCcosA=2sinBcosB,
即sin(A+C)=2sinBcosB.
∵A+B+C=π,0<A<$\frac{π}{2}$,0<B<$\frac{π}{2}$,0<C<$\frac{π}{2}$,
∴sin(A+C)=sin(π-B)≠0,
∴sin(π-B)=sinB=2sinBcosB,
∴cosB=$\frac{1}{2}$.
∵B∈(0,π)
∴B=$\frac{π}{3}$.
(Ⅱ)f(x)=$\sqrt{3}$sinωxcosωx-$\frac{1}{2}$cos2ωx=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$cos2ωx=sin(2ωx-$\frac{π}{6}$).
由已知可得:$\frac{2π}{2ω}$=π,
∴ω=1,
∴f(x)=sin(2x-$\frac{π}{6}$).
∵B=$\frac{π}{3}$,
∴C=$\frac{2π}{3}$-A.
∵0<A<$\frac{π}{2}$,0<C<$\frac{π}{2}$,
∴0<$\frac{2π}{3}$-A<$\frac{π}{2}$,
∴$\frac{π}{6}$<A<$\frac{π}{2}$,
∴$\frac{π}{6}$<2A-$\frac{π}{6}$<$\frac{5π}{6}$,
∴$\frac{1}{2}$<sin(2A-$\frac{π}{6}$),
∴f(A)的取值范圍是($\frac{1}{2}$,1].
點(diǎn)評(píng) 本題考查正弦定理,三角形的內(nèi)角和的應(yīng)用以及兩角和與差的正弦函數(shù),注意角的范圍的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{6}}{3}$ | B. | $\frac{14\sqrt{6}}{3}$ | C. | 4$\sqrt{3}$ | D. | 6$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | lg9lg11>1 | B. | lg9lg11=1 | C. | lg9lg11<1 | D. | 不能確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com