4.在△ABC中,∠B=$\frac{π}{3}$,∠C=$\frac{π}{4}$,BC=8,D是邊BC上一點(diǎn),且$\overrightarrow{BD}$=$\frac{\sqrt{3}-1}{2}$$\overrightarrow{BC}$,則AD的長(zhǎng)為(  )
A.12-4$\sqrt{3}$B.12+4$\sqrt{3}$C.4$\sqrt{3}$-4D.4$\sqrt{3}$+4

分析 利用正弦定理可得c,再利用余弦定理即可得出.

解答 解:|$\overrightarrow{BD}$|=$\frac{\sqrt{3}-1}{2}$|$\overrightarrow{BC}$|=4$(\sqrt{3}-1)$,
由正弦定理可得:$\frac{8}{sin\frac{5π}{12}}$=$\frac{c}{sin\frac{π}{4}}$,解得c=8$(\sqrt{3}-1)$.
∴AD2=$[4(\sqrt{3}-1)]^{2}$+$[8(\sqrt{3}-1)]^{2}$-2×$4(\sqrt{3}-1)$×$8(\sqrt{3}-1)$×$\frac{1}{2}$=48$(\sqrt{3}-1)^{2}$,
解得AD=12-4$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.復(fù)數(shù)z=$\frac{5+i}{1+i}$的虛部為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,且短軸長(zhǎng)為8$\sqrt{2}$,離心率為$\frac{1}{3}$,則該橢圓的方程為( 。
A.$\frac{x^2}{144}$+$\frac{y^2}{128}$=1B.$\frac{x^2}{32}$+$\frac{y^2}{36}$=1C.$\frac{x^2}{36}$+$\frac{y^2}{20}$=1D.$\frac{x^2}{36}$+$\frac{y^2}{32}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)集合A={x|x2+(a-1)x+b=0}={a},集合M={(a,b)},求集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=$\sqrt{2}$,b=$\sqrt{3}$,∠B=$\frac{π}{3}$,則∠A=( 。
A.$\frac{3π}{4}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿(mǎn)足:an=2an-1+2n+2(n∈N*,n≥2),a1=2,數(shù)列{bn}滿(mǎn)足bn=$\frac{{a}_{n}+2}{{2}^{n}}$(n∈N*).
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,求Sn
(3)己知數(shù)列{cn}滿(mǎn)足cn=$\frac{1}{_{n}_{n+1}}$,且數(shù)列{cn}的前n項(xiàng)和為T(mén)n,若不等式8Tn≤λbn+1對(duì)任意的n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)命題p:f(x)=$\frac{1}{x-m}$在區(qū)間(1,+∞)上是減函數(shù);命題q;x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,不等式m2+5m-3≥|x1-x2|對(duì)任意實(shí)數(shù),a∈[-1,1]恒成立;若(¬p)∧q為真命題,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)隨機(jī)變量X~B(2,$\frac{1}{3}$),則D($\frac{1}{2}$X+2)的值是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a>0).
(1)若a=2,求曲線(xiàn)y=f(x)在(1,f(1))處的切線(xiàn)方程;
(2)求函數(shù)y=f(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案