分析 根據對數函數的性質先求出A的坐標,代入直線方程可得m、n的關系,再利用1的代換結合均值不等式求解即可.
解答 解:∵x=-2時,y=loga1-1=-1,
∴函數y=loga(x+3)-1(a>0,a≠1)的圖象恒過定點(-2,-1)即A(-2,-1),
∵點A在直線mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
∵mn>0,
∴m>0,n>0,$\frac{1}{m}$+$\frac{2}{n}$=($\frac{1}{m}$+$\frac{2}{n}$)(2m+n)=2+$\frac{n}{m}$+$\frac{4m}{n}$+2≥4+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$=8,
當且僅當m=$\frac{1}{4}$,n=$\frac{1}{2}$時取等號,即$\frac{1}{m}$+$\frac{2}{n}$的最小值為8.
點評 本題考查了對數函數的性質和均值不等式等知識點,運用了整體代換思想,是高考考查的重點內容.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x≤1} | B. | {x|-3≤x≤-1} | C. | {x|x<-3或x>-1} | D. | {x|x≤1或x≥3} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 一定為正 | B. | 一定為負 | C. | 先為正后為負 | D. | 先為負后為正 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com