14.已知各項(xiàng)均不相等的等差數(shù)列{an}的前5項(xiàng)和S5=20,且a1,a3,a7成等比數(shù)列,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為(  )
A.$\frac{n}{2(n+2)}$B.$\frac{n}{2(n+1)}$C.$\frac{2n}{n+2}$D.$\frac{n}{n+1}$

分析 根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)S5=5a3,a32=a1•a7,根據(jù)等差數(shù)列通項(xiàng)公式(a3-2d)(a3+4d)=16,求的d和a1,即可求得an,$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
運(yùn)用裂項(xiàng)相消求和,求得Tn

解答 解:由等差數(shù)列通項(xiàng)公式S5=5a3,
∴5a3=20,即a3=4,
a1,a3,a7成等比數(shù)列,a32=a1•a7,
∴a1•a7=16,
即(a3-2d)(a3+4d)=16,即解得:(4-2d)(4+4d)=16,
整理得:d2-d=0,解得d=1或d=0(舍去),
由:a3=a1+(3-1)d,解得:a1=2,
∴an=2+n-1=n+1,
$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Sn=($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n+1}$-$\frac{1}{n+2}$),
=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$,
=$\frac{1}{2}$-$\frac{1}{n+2}$,
=$\frac{n}{2(n+2)}$,
故答案選:A.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)和求和公式的運(yùn)用,同時(shí)考查等比數(shù)列的性質(zhì),以及數(shù)列的求和方法,利用“裂項(xiàng)法”求前n項(xiàng)和,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線C:xy=1,過C上一點(diǎn)An(xn,yn)作一斜率為kn=-$\frac{1}{{x}_{n}+2}$的直線交曲線C于另一點(diǎn)An+1(xn+1,yn+1),點(diǎn)列{An}的橫坐標(biāo)構(gòu)成數(shù)列{xn},其中x1=$\frac{11}{7}$
(Ⅰ)求xn與xn+1的關(guān)系式;
(Ⅱ)令bn=$\frac{1}{{x}_{n}-2}$+$\frac{1}{3}$,求證:數(shù)列{bn}是等比數(shù)列,并寫出通項(xiàng)公式;
(Ⅲ)若cn=3n-λbn(λ為非零正數(shù),n∈N*),試確定λ的值,使得對任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)f(x)=3cos($\frac{π}{2}$x)與g(x)=x-1的所有交點(diǎn)從左往右依次記為A1,A2,A3,…,An,若O為坐標(biāo)原點(diǎn),則|$\overrightarrow{O{A}_{1}}$+$\overrightarrow{O{A}_{2}}$+…+$\overrightarrow{O{A}_{n}}$|=(  )
A.0B.1C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}滿足a1=1,an+1=3an+1(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{4}$(3n+1-2n-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}滿足a1=5,an+1=2an+3,則a3=29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.直線mx+(1-m)y+2m-2=0(m∈R)恒過定點(diǎn)P,則點(diǎn)P的坐標(biāo)為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a、b、c∈Z)是奇函數(shù),且f(1)=2,f(2)<3
(1)求a、b、c的值;
(2)當(dāng)x<0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=(x-$\frac{1}{x}$)•cosx,x∈[-π,π]且x≠0,則下列描述正確的是( 。
A.函數(shù)f(x)為偶函數(shù)B.函數(shù)f(x)在(0,π)上有最大值無最小值
C.函數(shù)f(x)有2個(gè)不同的零點(diǎn)D.函數(shù)f(x)在(-π,0)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)f(x)=xex,若f'(x0)=0,則x0=( 。
A.-eB.eC.-1D.1

查看答案和解析>>

同步練習(xí)冊答案