3.-401是等差數(shù)列-5,-9,-13…的第( 。╉(xiàng).
A.101B.100C.99D.98

分析 求出首項(xiàng)a1=-5,公差d=(-9)-(-5)=-4,從而an=-5+(n-1)×(-4)=-4n-1,由此能求出結(jié)果.

解答 解:等差數(shù)列-5,-9,-13…中,
首項(xiàng)a1=-5,公差d=(-9)-(-5)=-4,
∴an=-5+(n-1)×(-4)=-4n-1,
∵an=-4n-1=-401,∴n=100.
故-401是等差數(shù)列-5,-9,-13…的第100項(xiàng).
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的某一項(xiàng)的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{12}$對(duì)稱,當(dāng)x1,x2∈(-$\frac{17}{12}$π,-$\frac{2π}{3}$),x1≠x2時(shí),f(x1)=f(x2),則f(x1+x2)=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.平面向量$\overrightarrow{m}$=(2sinωx,$\sqrt{3}$),$\overrightarrow{n}$=(2cos(ωx+$\frac{π}{3}$),1)(ω>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期是π.
(Ⅰ)求f(x)的解析式和對(duì)稱軸方程; 
(Ⅱ)求f(x)在$[{-\frac{π}{4},\frac{π}{6}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足${S_n}=2{a_n}-{2^{n+1}}+n(n∈{N^*})$.
(1)求a2,a3;
(2)是否存在實(shí)數(shù)λ,使數(shù)列$\{\frac{{{a_n}+λ}}{2^n}\}$為等差數(shù)列,若存在,求出請(qǐng)求出λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.滿足條件$|{z-2i}|+|{z+1}|=\sqrt{5}$的點(diǎn)的軌跡是( 。
A.橢圓B.直線C.線段D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)不等式組$\left\{\begin{array}{l}2x+y≥2\\ x-2y≥-4\\ 3x-y≤3\end{array}\right.$,所表示的平面區(qū)域?yàn)镸,若函數(shù)y=k(x+1)+1的圖象經(jīng)過區(qū)域M,則實(shí)數(shù)k的取值范圍是( 。
A.$[{-\frac{1}{2},1})$B.$({-\frac{1}{2},1}]$C.$({-\frac{1}{2},1})$D.$[{-\frac{1}{2},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.已知直線l1的極坐標(biāo)為$\sqrt{2}$ρsin$(θ-\frac{π}{4})$=2 017,直線l2的參數(shù)方程為$\left\{\begin{array}{l}x=-2017+tcos\frac{π}{4}\\ y=2017+tsin\frac{π}{4}\end{array}\right.(t為參數(shù))$,則l1與l2的位置關(guān)系為( 。
A.垂直B.平行C.相交但不垂直D.重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)曲線y=2x-x3在點(diǎn)(1,1)處的切線為l,點(diǎn)P(m,n)在l上,mn>0,則$\frac{1}{m}$+$\frac{4}{n}$的最小值為( 。
A.2B.3C.$\frac{9}{4}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≥1}\\{{lo{g}_{4}}^{x},0<x<1}\end{array}\right.$則f(2)=$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案