如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求證:CD⊥平面PAC;
(II)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出點(diǎn)E的位置,并證明,若不存在,請(qǐng)說(shuō)明理由.

(I)見解析;(II)存在,證明見解析.

解析試題分析:(I)先根據(jù)已知條件證明,那么就有,在根據(jù)題中已知邊的長(zhǎng)度,由勾股定理證明,根據(jù)直線與平面垂直的判定定理即可證明;(II)設(shè)的中點(diǎn)為, 連結(jié),,,證明四邊形為平行四邊形,由直線與平面平行的判定定理可知,平面.
試題解析:(I)∵,∴.
又∵,,且,

,∴.                             3分
在底面中,∵,,
,有,∴.
又∵, ∴.                     6分
(II)在上存在中點(diǎn),使得平面,                 8分
證明如下:設(shè)的中點(diǎn)為, 連結(jié),,如圖所示:

,且.           
由已知,
,且,     10分
∴四邊形為平行四邊形,∴.
平面,平面,
平面.                                       12分
考點(diǎn):1、直線與平面垂直的判定定理;2、勾股定理的應(yīng)用;3、直線與平面平行的判定定理;4、平面與平面垂直的性質(zhì)定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱中,,

(Ⅰ)求證:平面;
(Ⅱ)若的中點(diǎn),求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱中,,點(diǎn)分別為的中點(diǎn).

(1)證明:平面;
(2)求所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),AC = 1,BC = 2,AA1 = 4.

(Ⅰ)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1
(Ⅱ)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的余弦值是,若存在,求CE的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直角梯形中,,,,,過(guò),垂足為.、分別是、的中點(diǎn).現(xiàn)將沿折起,使二面角的平面角為.

(1)求證:平面平面
(2)求直線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2(1)PD.

(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,AC是圓O的直徑,點(diǎn)B在圓O上,,交AC于點(diǎn)M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1,

(1)證明;
(2)(文科)求三棱錐的體積
(理科)求平面和平面所成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面為正方形,底面,分別是的中點(diǎn).

(1)求證:平面;
(2)求證:平面平面
(3)若,求與平面所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是矩形,底面,的中點(diǎn),已知,,

求:(Ⅰ)三角形的面積;(II)三棱錐的體積

查看答案和解析>>

同步練習(xí)冊(cè)答案