【題目】已知F1,F2分別為雙曲線的左、右焦點,P為雙曲線右支上的任意一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是(   )

A. (1,+∞) B. (1,2] C. (1,] D. (1,3]

【答案】D

【解析】雙曲線的左右焦點分別為為雙曲線右支一的任意一點,,,當(dāng)且僅當(dāng)時取等號,,,,,故選D.

【方法點晴】本題主要考查利用雙曲線的定義及簡單性質(zhì)求雙曲線的離心率范圍,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率范圍問題應(yīng)先將 用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的不等式,從而求出的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等腰梯形 的底角 等于,直角梯形 所在的平面垂直于平面, ,且.

(1)證明:平面平面;

(2)點在線段上,試確定點的位置,使平面與平面所成二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù),滿足,實數(shù)滿足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】股票市場的前身是起源于1602年荷蘭人在阿姆斯特河大橋上進行荷屬東印度公司股票的買賣,而正規(guī)的股票市場最早出現(xiàn)在美國.2017年2月26號,中國證監(jiān)會主席劉士余談了對股市的幾點建議,給廣大股民樹立了信心.最近,張師傅和李師傅要將家中閑置資金進行投資理財.現(xiàn)有兩種投資方案,且一年后投資盈虧的情況如下:

(1)投資股市:

投資結(jié)果

獲利

不賠不賺

虧損

概率

(2)購買基金:

投資結(jié)果

獲利

不賠不賺

虧損

概率

(Ⅰ)當(dāng)時,求的值;

(Ⅱ)已知“購買基金”虧損的概率比“投資股市”虧損的概率小,求的取值范圍;

(Ⅲ)已知張師傅和李師傅兩人都選擇了“購買基金”來進行投資,假設(shè)三種投資結(jié)果出現(xiàn)的可能性相同,求一年后他們兩人中至少有一人獲利的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項均為正數(shù)的數(shù)列的前n項和為滿足,,公比大于1的等比數(shù)列滿足, .

1求證數(shù)列是等差數(shù)列,并求其通項公式

2,求數(shù)列的前n項和

3)在(2)的條件下,若對一切正整數(shù)n恒成立求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn是等差數(shù)列{an}的前n項和,且S8>S9>S7 , 給出下列四個命題:
①d<0;
②S16<0;
③數(shù)列{Sn}中的最大項為S15;
④|a8|>|a9|.
其中正確命題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學(xué)生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.

整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組: , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:

定義學(xué)生對餐廳評價的“滿意度指數(shù)”如下:

分數(shù)

滿意度指數(shù)

(Ⅰ)在抽樣的100人中,求對餐廳評價“滿意度指數(shù)”為0的人數(shù);

(Ⅱ)從該校在 兩家餐廳都用過餐的學(xué)生中隨機抽取1人進行調(diào)查,試估計其對餐廳評價的“滿意度指數(shù)”比對餐廳評價的“滿意度指數(shù)”高的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點,求;

(2)設(shè)圓軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù)),,.

(1)記函數(shù),且,求的單調(diào)增區(qū)間;

(2)若對任意,,,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案