20.已知cos($\frac{π}{4}$-θ)=$\frac{{\sqrt{3}}}{3}$,求cos($\frac{3π}{4}$+θ)-sin2(θ-$\frac{π}{4}$)的值.

分析 利用誘導(dǎo)公式以及平方關(guān)系式化簡求解即可.

解答 解:∵$(\frac{π}{4}-θ)+(\frac{3π}{4}+θ)=π$,
∴$cos(\frac{3π}{4}+θ)=cos[π-(\frac{π}{4}-θ)]=-cos(\frac{π}{4}-θ)$.
∴$cos(\frac{3π}{4}+θ)-si{n^2}(θ-\frac{π}{4})=-cos(\frac{π}{4}-θ)-1+{cos^2}(θ-\frac{π}{4})$=$-\frac{{\sqrt{3}}}{3}-1+{(\frac{{\sqrt{3}}}{3})^2}$=$-\frac{{2+\sqrt{3}}}{3}$.

點評 本題考查三角函數(shù)化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,則$\frac{{a}_{5}}{_{6}}$=$\frac{9}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC 中,內(nèi)角 A,B,C 的對邊分別是 a,b,c,若 c=2a,bsinB-asin A=$\frac{1}{2}$asinC,則sinB=$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=lnx-ax2+ax恰有兩個零點,則實數(shù)a的取值范圍為( 。
A.(-∞,0)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,0)∪{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=2x3-6x+k,x∈R.
(1)當k=5時,求函數(shù)f(x)在點(2,f(2))處的切線方程.
(2)若函數(shù)f(x)=2x3-6x+k在R上只有一個零點,求常數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知P1(2,-1),P2(0,5),點P在P1P2的延長線上,且|$\overrightarrow{{P}_{1}P}$|=3|$\overrightarrow{P{P}_{2}}$|,則點P的坐標為(  )
A.(1,2)B.($\frac{4}{3}$,3)C.($\frac{2}{3}$,3)D.(-1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知:△ABC中,角A,B,C所對應(yīng)的邊為a,b,c,其中B=60°,c=4.
(Ⅰ)若C=45°,求b;
(Ⅱ)若b=2$\sqrt{7}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線l1:y=2x,直線l2過定點A(3,2)且與x軸上交于點P(a,0)(a>2),則直線l1,l2與x軸正半軸圍成的三角形面積的最小值=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x,則(  )
A.函數(shù)f(x)無極值點B.x=1為f(x)的極小值點
C.x=2為f(x)的極大值點D.x=2為f(x)的極小值點

查看答案和解析>>

同步練習(xí)冊答案