10.關天x的方程:$\frac{x+2}{x+1}$-$\frac{x-1}{x-2}$=$\frac{2{x}^{2}+ax}{(x-2)(x+1)}$只有一個實根,則實數(shù)a的值為( 。
A.-2$\sqrt{6}$B.2$\sqrt{6}$C.a=5或a=-$\frac{11}{2}$D.±2$\sqrt{6}$

分析 通分化簡方程,令判別式△=0,并進行檢驗即可得出a的值.

解答 解:∵$\frac{x+2}{x+1}$-$\frac{x-1}{x-2}$=$\frac{2{x}^{2}+ax}{(x-2)(x+1)}$,
∴$\frac{-3}{(x+1)(x-2)}$=$\frac{2{x}^{2}+ax}{(x-2)(x+1)}$,
∴2x2+ax+3=0只有一解,且x≠-1,x≠2.
∴△=a2-24=0,解得a=$±2\sqrt{6}$.
當a=2$\sqrt{6}$時,方程的解為x=-$\frac{a}{4}$=-$\frac{\sqrt{6}}{2}$,符合題意;
當a=-2$\sqrt{6}$時,方程的解為x=-$\frac{a}{4}$=$\frac{\sqrt{6}}{2}$,符合題意.
故選D.

點評 本題考查了分式方程,一元二次方程的解,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.若復數(shù)Z滿足Z•i=1+i(i是虛數(shù)單位),則Z的共軛復數(shù)是( 。
A.1+iB.-1-iC.-1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的半焦距c=1,且a=$\sqrt{2}$b.
(1)求橢圓D的標準方程;
(2)過點M(0,m)且斜率為$\sqrt{2}$的直線l與橢圓D有兩個不同的交點P和Q,若以PQ為直徑的圓經過原點O,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(-∞,0)上是減函數(shù)的是( 。
A.f(x)=x3+xB.f(x)=|x|+1C.f(x)=-x2+1D.f(x)=2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設數(shù)列{an}的前n項和為Sn,點(n,$\frac{{S}_{n}}{n}$),(n∈N*)均在函數(shù)y=2x-35的圖象上.
(1)求數(shù)列{an}的通項公式并證明數(shù)列是等差數(shù)列.
(2)當n為何值時,Sn取得最小值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知,x,y的方程組$\left\{\begin{array}{l}{mx+4y=2}\\{x+y=1}\end{array}\right.$.
(1)求D,Dx,Dy;
(2)當實數(shù)m為何值時方程組無解;
(3)當實數(shù)m為何值時方程組有解,并求出方程組的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,已知四邊形ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E為BC的中點.
(1)求證:平面PED⊥平面PAE;
(2)求直線PD與平面PAE所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的正半軸重合.若直線l的極坐標方程為ρcos(θ-$\frac{π}{4}}$)=3$\sqrt{2}$
(1)把直線l的極坐標方程化為直角坐標方程;
(2)已知P為曲線C:$\frac{x^2}{16}+\frac{y^2}{9}$=1上一點,求點P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$當x∈[0,10]時,關于x的方程f(x)=x的所有解的和為(  )
A.50B.55C.60D.65

查看答案和解析>>

同步練習冊答案