16.已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=1+4cosθ\\ y=2+4sinθ\end{array}\right.$(θ為參數(shù))直線l經(jīng)過定點P(2,1),傾斜角為$\frac{π}{6}$.
(1)寫出直線l的參數(shù)方程和曲線C的普通方程.
(2)設(shè)直線l與曲線C相交于A,B兩點,求|PA|•|PB|的值.

分析 (1)由圓 $\left\{\begin{array}{l}x=1+4cosθ\\ y=2+4sinθ\end{array}\right.$(θ為參數(shù)),利用平方關(guān)系消去參數(shù)θ可得圓的普通方程,直線l經(jīng)過定點P(2,1),傾斜角為$\frac{π}{6}$,即可得出直線l的參數(shù)方程.
(2)將直線l的參數(shù)方程代入圓的普通方程,整理,得:${t}^{2}+(\sqrt{3}-1)$t-14=0,可得|PA|•|PB|=|t1•t2||.

解答 解:(1)由圓   $\left\{\begin{array}{l}x=1+4cosθ\\ y=2+4sinθ\end{array}\right.$(θ為參數(shù)),利用平方關(guān)系消去參數(shù)θ可得圓的普通方程為:(x-1)2+(y-2)2=16,
直線l經(jīng)過定點P(2,1),傾斜角為$\frac{π}{6}$,可得:
直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).
(2)將直線l的參數(shù)方程代入圓的普通方程,整理,得:${t}^{2}+(\sqrt{3}-1)$t-14=0,
設(shè)t1,t2是方程的兩根,∴t1•t2=-14.
∴|PA|•|PB|=|t1||t2|=|t1•t2||=14.

點評 本題考查了參數(shù)方程化為普通方程、直線參數(shù)方程的應(yīng)用、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a∈R,設(shè)命題p:函數(shù)f(x)=ax是R上的單調(diào)遞減函數(shù);命題q:函數(shù)g(x)=lg(2ax2+2ax+1)的定義域為R.若“p∨q”是真命題,“p∧q”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)a>0,a≠1,函數(shù)f(x)=loga(x2-2x+3)有最小值,則不等式loga(x-1)<0的解集( 。
A.(-∞,2)B.(1,2)C.(2,+∞)D.(1,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.當(dāng)y=2sin6x+cos6x取得最小值時,cos2x=3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知平行四邊形ABCD中,AC與BD相交于點O,E為線段OD的中點,AE的延長線與CD相交于F,若$\overrightarrow{DB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,試用$\overrightarrow a、\overrightarrow b$表示$\overrightarrow{AF}$向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.先從袋中隨機(jī)取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為n,則n<m+1的概率是( 。
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合M={x|x<-3,或x>5},P={x|(x-a)•(x-8)≤0}.
(1)求實數(shù)a的取值范圍,使它成為M∩P={x|5<x≤8}的充要條件;
(2)求實數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x),若對于任意的x∈R,都有f(-$\frac{1}{2}$-x)=f(-$\frac{1}{2}$+x),且f(-$\frac{1}{2}$)=-$\frac{9}{4}$,f(0)=-2.
(1)求f(x)的解析式;
(2)若方程f(cosθ)=$\sqrt{2}$sin(θ+$\frac{π}{4}$)+msinθ有實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),則f($\frac{3}{4}$)與f(a2-a+1)的大小關(guān)系是( 。
A.f($\frac{3}{4}$)<f(a2-a+1)B.f($\frac{3}{4}$)>f(a2-a+1)C.f($\frac{3}{4}$)≤f(a2-a+1)D.f($\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

同步練習(xí)冊答案