4.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=8,B=60°,C=75°,則b=4$\sqrt{6}$.

分析 由已知利用三角形內(nèi)角和定理可求A,根據(jù)正弦定理即可求b的值.

解答 解:在△ABC中,∵a=8,B=60°,C=75°,
∴則A=180°-60°-75°=45°,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{8×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=4$\sqrt{6}$.
故答案為:4$\sqrt{6}$.

點(diǎn)評(píng) 本題主要考查了三角形內(nèi)角和定理,正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)命題p:不等式|2x-1|<x+a的解集是{x|-$\frac{1}{3}$<x<3};命題q:不等式4x≥ax2+1的解集是∅,若“p或q”為真命題,試求實(shí)數(shù)a的值取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1上一點(diǎn)P到左焦點(diǎn)F1的距離為10,則當(dāng)PF1的中點(diǎn)N到坐標(biāo)原點(diǎn)O的距離為( 。
A.3或7B.6或14C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知z為復(fù)數(shù),z+2i和$\frac{z}{2-i}$都是實(shí)數(shù),其中i為虛數(shù)單位.求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$cos2x+sin2(x+$\frac{π}{4}}$).
(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}}$)時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合A={x|1≤x≤5},B={x|x<0或x>3},A∩B=(3,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是一個(gè)等比數(shù)列的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{n(an+3)}$ (n∈N+),Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,三棱錐P-ABC的棱長(zhǎng)都相等,D是棱AB的中點(diǎn),則直線PD與直線BC所成角的余弦值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案