分析 將遞推式an+1=3an+3n+1+λ2n兩邊同除以3n+1,整理得$\frac{an+1}{3n+1}$=$\frac{an}{3n}$+1+$\frac{λ}{3}$•($\frac{2}{3}$)n,可得$\frac{an+1}{3n+1}$-($\frac{2}{3}$)n+1=$\frac{an}{3n}$+$\frac{λ-2}{3}$•($\frac{2}{3}$)n+1,利用數(shù)列{$\frac{a_n}{3^n}$-($\frac{2}{3}$)n}為等差數(shù)列,即可得出.
解答 解:將遞推式an+1=3an+3n+1+λ2n兩邊同除以3n+1,整理得$\frac{an+1}{3n+1}$=$\frac{an}{3n}$+1+$\frac{λ}{3}$•($\frac{2}{3}$)n.
兩邊同減($\frac{2}{3}$)n+1,整理得$\frac{an+1}{3n+1}$-($\frac{2}{3}$)n+1=$\frac{an}{3n}$+$\frac{λ-2}{3}$•($\frac{2}{3}$)n+1,
由于{$\frac{an}{3n}$-($\frac{2}{3}$)n}為等差數(shù)列,∴$\frac{λ-2}{3}$=-1,解得λ=-1.
故答案為:-1.
點(diǎn)評 本題考查了數(shù)列的遞推關(guān)系、等差數(shù)列的定義,考查了轉(zhuǎn)化能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 原點(diǎn) | B. | 一條直線 | C. | 一點(diǎn)和一條直線 | D. | 兩條相交直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 |
分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
女性用戶 | 男性用戶 | 合計(jì) | |
“認(rèn)可”手機(jī) | |||
“不認(rèn)可”手機(jī) | |||
合計(jì) |
P(X2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com