13.以下數(shù)表的構(gòu)造思路源于我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中的“楊輝三角形”.

該表由若干行數(shù)字組成,第一行共有2016個(gè)數(shù)字,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)為( 。
A.2016×22015B.2016×22014C.2017×22015D.2017×22014

分析 由題意,數(shù)表的每一行都是等差數(shù)列,且第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014,可得:第n行的第一個(gè)數(shù)為:(n+1)×2n-2,即可得出.

解答 解:由題意,數(shù)表的每一行都是等差數(shù)列,
且第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014,
故第1行的第一個(gè)數(shù)為:2×2-1
第2行的第一個(gè)數(shù)為:3×20,
第3行的第一個(gè)數(shù)為:4×21,

第n行的第一個(gè)數(shù)為:(n+1)×2n-2,
第2016行只有M,
則M=(1+2016)•22014=2017×22014,
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在一次購物抽獎(jiǎng)活動(dòng)中,假設(shè)某l0張獎(jiǎng)券中有一等獎(jiǎng)券1張,可獲得價(jià)值100元的獎(jiǎng)品,有二等獎(jiǎng)券3張,每張可獲得價(jià)值50元的獎(jiǎng)品,其余6張沒有獎(jiǎng),某顧客從此l0張獎(jiǎng)券中任抽2張,求
(I)該顧客中獎(jiǎng)的概率;
(Ⅱ)該顧客獲得獎(jiǎng)品總價(jià)值X的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某小區(qū)有1000戶,各戶每月的用電量近似服從正態(tài)分布N(300,l01),則用電量在320度以上的戶數(shù)估計(jì)約為( 。
(參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.74%.)
A.17B.23C.34D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z=a+bi(a,b∈R,i為虛數(shù)單位)滿足z2=-1,則b=( 。
A.1B.±1C.iD.±i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中
①復(fù)數(shù)a+bi與c+di相等的充要條件是a=c且b=d
②任何復(fù)數(shù)都不能比較大小
③若$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$,則|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|
④若|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|,則$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$或$\overrightarrow{{z}_{1}}$=-$\overrightarrow{{z}_{2}}$.
正確的選項(xiàng)是( 。
A.①③B.①②C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知${log_{\frac{1}{2}}}$(x+y+4)<${log_{\frac{1}{2}}}$(3x+y-2),若x-y<λ+$\frac{9}{λ}$恒成立,則λ的取值范圍是( 。
A.(-∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}的前n項(xiàng)為Sn,且滿足關(guān)系式lg(Sn-1)=n (n∈N*),則數(shù)列{an}的通項(xiàng)公式an=(  )
A.9•10n-1B.$\left\{{\begin{array}{l}{11}\\{9•{{10}^{n-1}}}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$
C.10n+1D.$\left\{{\begin{array}{l}9\\{{{10}^n}+1}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某烹任學(xué)院為了弘揚(yáng)中國傳統(tǒng)的飲食文化,舉辦了一場(chǎng)由在校學(xué)生參加的廚藝大賽,組委會(huì)為了了解本次大賽參賽學(xué)生的成績(jī)情況,從參賽學(xué)生中抽取了n名學(xué)生的成績(jī)(滿分100分)作為樣本,將所得數(shù)經(jīng)過分析整理后畫出了評(píng)論分布直方圖和莖葉圖,其中莖葉圖收到污染,請(qǐng)據(jù)此解答下列問題:

(1)求頻率分布直方圖中a,b的值并估計(jì)此次參加廚藝大賽學(xué)生的平均成績(jī);
(2)規(guī)定大賽成績(jī)?cè)赱80,90)的學(xué)生為廚霸,在[90,100]的學(xué)生為廚神,現(xiàn)從被稱為廚霸、廚神的學(xué)生中隨機(jī)抽取3人,其中廚神人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)在區(qū)間[0,$\frac{π}{4}$]上的最小值為( 。
A.-1B.$-\frac{{\sqrt{3}}}{2}$C.$-\sqrt{3}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案