16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF,若|AB|=10,|AF|=6,cos∠FAB=$\frac{3}{5}$,則C的離心率e=$\frac{5}{7}$.

分析 如圖所示,設(shè)右焦點為F′,由橢圓的對稱性與定義可得:BF′=AF=6,BF=2a-6.在△ABF中,由余弦定理可得:cos∠FAB=$\frac{3}{5}$=$\frac{{6}^{2}+1{0}^{2}-(2a-6)^{2}}{2×6×10}$,解得a,在△OAF中,由余弦定理可得:c.

解答 解:如圖所示,
設(shè)右焦點為F′,由橢圓的對稱性與定義可得:BF′=AF=6,BF=2a-6.
在△ABF中,由余弦定理可得:
cos∠FAB=$\frac{3}{5}$=$\frac{{6}^{2}+1{0}^{2}-(2a-6)^{2}}{2×6×10}$,
解得a=7,
在△OAF中,由余弦定理可得:c2=62+52-2×6×5×$\frac{3}{5}$=25,解得c=5.
∴e=$\frac{5}{7}$.
故答案為:$\frac{5}{7}$.

點評 本題考查了橢圓的標準方程及其性質(zhì)、余弦定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$f(x)=\left\{\begin{array}{l}{{x}^{2},x≥2}\\{x+3,x<2}\end{array}\right.$,若f(a)+f(3)=0,則實數(shù)a=-12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知冪函數(shù)y=f(x)滿足f(27)=3,則f(x)=${x^{\frac{1}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=-x+$\frac{1}{2x}$,求證:
(1)函數(shù)f(x)是奇函數(shù); 
(2)函數(shù)f(x)在區(qū)間(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.雙曲線3x2-y2=k的焦距是8,則k的值為(  )
A.±12B.12C.±48D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知動圓P過定點A(-2$\sqrt{2}$,0),且內(nèi)切于定圓B:(x-2$\sqrt{2}$)2+y2=36.
(Ⅰ)求動圓圓心P的軌跡C方程;
(Ⅱ)在(Ⅰ)的條件下,記軌跡C被y=x+m所截得的弦長為f(m),求f(m)的解析式及其最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在一個不透明的箱子里放有四個質(zhì)地相同的小球,四個小球標的號碼分別為1,1,2,3.現(xiàn)甲、乙兩位同學依次從箱子里隨機摸取一個球出來,記下號碼并放回.
(Ⅰ)求甲、乙兩位同學所摸的球號碼相同的概率;
(Ⅱ)求甲所摸的球號碼大于乙所摸的球號碼的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)函數(shù)y=f(x)是奇函數(shù),并且對任意x∈R,均有f(-x)=f(x+2),又當x∈(0,1]時,f (x)=2 x,則f($\frac{5}{2}$)的值是( 。
A.$\frac{\sqrt{72}}{2}$B.-$\frac{\sqrt{2}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*),若不等式$\frac{4}{{2}^{n}}$+$\frac{1}{n}$+tan≥0恒成立,則實數(shù)t的取值范圍是[-6,+∞).

查看答案和解析>>

同步練習冊答案