考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)題目給出的遞推式,構(gòu)造方程組,兩式作差后兩邊平方運算,得到數(shù)列{bn}為等差數(shù)列,寫出等差數(shù)列的通項公式,把bn代入后可求an,然后即可求出S2014.
解答:
解:∵2S
n=a
n+,①
∴2S
n+1=a
n+1+
②
②-①得:2S
n+1-2S
n=a
n+1+
-(a
n+),
即2a
n+1=a
n+1+
-(a
n+),
∴a
n+=
-a
n+1,
兩邊平方得a
n2+
+2=(
)
2+a
n+12-2,
即[a
n+12+(
)
2]-(a
n2+
)=4
設(shè)b
n=a
n2+
,
則b
n+1-b
n=4,
而b
1=
a12+=1+1=2,
∴數(shù)列{b
n}是首項為2,公差為4的等差數(shù)列,b
n=2+4(n-1)=4n-2.
則a
n2+
=4n-2,
即a
n2+2+
=4n,
則(a
n+)
2=4n,
又a
n>0>0,
故a
n+=2
,
從而a
n2+2
a
n+1=0,解得a
n=
±
,
而a
1=1,由2(a
1+a
2)=a
2+,
即a
22+2a
2-1=0,解得a
2=-1±
,
取a
2=
-1>0,則只有a
n=
-
符合.
∵2S
n=a
n+,
∴S
n=
(a
n+),
則S
2014=
(
-+
)=
(
-+
)=
(
-+
+
)=
,
故答案為:
.
點評:本題考查了數(shù)列的概念及簡單表示法,考查了利用遞推式求數(shù)列的通項公式,利用構(gòu)造法,結(jié)合等差數(shù)列的通項公式是解決本題的關(guān)鍵.綜合性較強,難度較大.