3.已知甲,乙兩輛車去同一貨場(chǎng)裝貨物,貨場(chǎng)每次只能給一輛車裝貨物,所以若兩輛車同時(shí)到達(dá),則需要有一車等待.已知甲、乙兩車裝貨物需要的時(shí)間都為30分鐘,倘若甲、乙兩車都在某1小時(shí)內(nèi)到達(dá)該貨場(chǎng),則至少有一輛車需要等待裝貨物的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 設(shè)現(xiàn)在時(shí)間是0,甲乙到場(chǎng)的時(shí)間分別是x y,那么就會(huì)有0≤x≤60,0≤y≤60,|x-y|如果小于30,就是等待事件,否則不用等待了.由此能求出至少有一輛車需要等待裝貨物的概率

解答 解:設(shè)現(xiàn)在時(shí)間是0,甲乙到場(chǎng)的時(shí)間分別是x y
那么就會(huì)有:
0≤x≤60,
0≤y≤60,
|x-y|<30,就是等待事件,否則不用等待了.畫(huà)出來(lái)坐標(biāo)軸如下圖
兩條斜直線間的面積是等待,
外面的兩個(gè)三角形面積是不等待,
∴至少有一輛車需要等待裝貨物的概率p=$\frac{60×60-2×\frac{1}{2}×30×30}{60×60}=\frac{3}{4}$;
故選:D.

點(diǎn)評(píng) 本題考查幾何概型概率的求法,解題時(shí)要認(rèn)真審題,注意幾何概型概率計(jì)算公式的合理運(yùn)用;屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”,為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
年齡[15,25)[25,35)[35,45)[45,55)[55,65]
支持“延遲退休”的人數(shù)155152817
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否95%的把握認(rèn)為以45歲為界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持有差異;
45歲以下45歲以上總計(jì)
支持
不支持
總計(jì)
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng),現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.口袋中有形狀大小都相同的2只白球和1只黑球.先從口袋中摸出1只球,記下顏色后放回口袋,然后再摸出1只球,則出現(xiàn)“1只白球,1只黑球”的概率為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.實(shí)數(shù)x,y滿足不等式組:$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,若z=x2+y2,則z的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.定義$\frac{n}{{P}_{1}+{P}_{2}+…+{P}_{n}}$為n個(gè)正數(shù)P1,P2…Pn的“均倒數(shù)”,若已知正整數(shù)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,則$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{10}_{11}}$=( 。
A.$\frac{1}{11}$B.$\frac{1}{12}$C.$\frac{10}{11}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$f(x)=\frac{e^x}{{{x^2}+a}}({a>0})$的兩個(gè)極值點(diǎn)分別為x1,x2(x1<x2),則ax2取值范圍是( 。
A.(0,1)B.(0,2)C.$({1,\frac{32}{27}}]$D.$({0,\frac{32}{27}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某幾何體的三視圖如圖所示,則該幾何體中最長(zhǎng)的棱長(zhǎng)為( 。
A.3$\sqrt{3}$B.2$\sqrt{6}$C.$\sqrt{21}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.《左傳•僖公十四年》有記載:“皮之不存,毛將焉附?”這句話的意思是說(shuō)皮都沒(méi)有了,毛往哪里依附呢?比喻事物失去了借以生存的基礎(chǔ),就不能存在.皮之不存,毛將焉附?則“有毛”是“有皮”的( 。l件.
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.根據(jù)下列條件解三角形:
(1)A=30°,B=105°,c=$\sqrt{2}$;
(2)a=14,b=7$\sqrt{6}$,B=60°;
(3)b=47,c=38,C=110°;
(4)b=25,c=12,C=23°.

查看答案和解析>>

同步練習(xí)冊(cè)答案