分析 由題意可得F≥|x2-4y+m|,F(xiàn)≥|y2-2x+n|,相加,由絕對值不等式的性質(zhì)和配方方法,可得最小值.
解答 解:F=max{|x2-4y+m|,|y2-2x+n|},
可得F≥|x2-4y+m|,F(xiàn)≥|y2-2x+n|,
即有2F≥|x2-4y+m|+|y2-2x+n|
≥|x2-4y+m+y2-2x+n|
=|x2-2x+y2-4y+6|
=|(x-1)2+(y-2)2+1|≥1,
即有2F≥1,
即F≥$\frac{1}{2}$,
可得x=1,y=2時,F(xiàn)取得最小值$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 本題考查函數(shù)的最值的求法,注意運用絕對值不等式的性質(zhì)和配方思想,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{5}{2}$ | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com