8.己知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-2x,x<0\end{array}$,則f[f(-2)]=16.

分析 先利用分段函數(shù)的性質(zhì)求出f(-2),由此能求出f[f(-2)].

解答 解:∵f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-2x,x<0\end{array}$,
∴f(-2)=-2×(-2)=4,
f[f(-2)]=f(4)=42=16.
故答案為:16.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等差數(shù)列的通項(xiàng)an=3n-2,則a20=( 。
A.58B.59C.78D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{xy≥0}\\{{x}^{2}+{y}^{2}≤4}\\{x+y-1≤0}\end{array}\right.$,則z=2x+y的最小值是(  )
A.-2$\sqrt{5}$B.2C.2$\sqrt{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)y=x3與y=($\frac{1}{2}$)x-2的圖象的交點(diǎn)為(x0,y0),若x0∈(n,n+1),n∈N,則x0所在的區(qū)間是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{{log}_a}x,x≥1}\end{array}}\right.$,若a=2,求f(f(2))=0;若f(x)是R上的單調(diào)函數(shù),則a的取值范圍是[$\frac{1}{7}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$max\{a,b\}=\left\{{\begin{array}{l}a&{(a≥b)}\\ b&{(a<b)}\end{array}}\right.$,已知x,y∈R,m+n=6,則F=max{|x2-4y+m|,|y2-2x+n|}的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=3x+λ•3-x(λ∈R)
(1)根據(jù)λ的不同取值,討論函數(shù)的奇偶性,并說明理由;
(2)若不等式f(x)≤6在x∈[0,2]上恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x),若f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2,x≤0}\\{-{x^2},x>0}\end{array}}$,f(f(1))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=1og4(4x+1)+kx(k∈R)是偶函數(shù),則f(x)的最小值是$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案