已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿(mǎn)足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=4n+(-1)n-1λ•2bn=4n+(-1)n-1λ•2 an(λ為非零整數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有bn+1>bn成立.
考點(diǎn):數(shù)列遞推式,數(shù)列的函數(shù)特性
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由已知推導(dǎo)出數(shù)列{an}是以a1=2為首項(xiàng),公差為1的等差數(shù)列.從而能求出an=n+1.
(2)由an=n+1,bn+1>bn恒成立,得3•4n-3λ•(-1)n-1•2n+1>0恒成立,從而(-1)n-1λbn
解答: (本題滿(mǎn)分12分)
解:(1)由已知,(Sn+1-Sn)-(Sn-Sn-1)=1(n≥2,n∈N*),…(2分)
∴數(shù)列{an}是以a1=2為首項(xiàng),公差為1的等差數(shù)列.
∴an=n+1.…(4分)
(2)∵an=n+1,
bn=4n+(-1)n-1•λ•2n+1,
要使bn+1>bn恒成立,
∴bn+1-bn=4n+1-4n+(-1)n•λ•2n+2-(-1)n-1•λ•2n+1>0恒成立,
∴3•4n-3λ•(-1)n-1•2n+1>0恒成立,
∴(-1)n-1λ<2n-1恒成立.…(6分)
(。┊(dāng)n為奇數(shù)時(shí),即λ<2n-1恒成立,
當(dāng)且僅當(dāng)n=1時(shí),2n-1有最小值為1,
∴λ<1.…(8分)
(ⅱ)當(dāng)n為偶數(shù)時(shí),即λ>-2n-1恒成立,
當(dāng)且僅當(dāng)n=2時(shí),-2n-1有最大值-2,
∴λ>-2,…(10分)
即-2<λ<1,又λ為非零整數(shù),則λ=-1.
綜上所述,存在λ=-1,使得對(duì)任意n∈N*,都有bn+1>bn.…(12分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查滿(mǎn)足條件的實(shí)數(shù)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意分類(lèi)討論思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知b1=
1
2
,bn+1=
n+1
2n
bn,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列:1,1+
1
2
,1+
1
2
+
1
22
,…,1+
1
2
+
1
22
+…+
1
2n-1
,…的前n項(xiàng)和為Sn,則Sn等于( 。
A、2n+
1
2n-1
B、
1
2n-1
C、2n-1+
1
2n
D、2n-2+
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax+b的圖象過(guò)點(diǎn)(1,e),其反函數(shù)為f-1(x)過(guò)點(diǎn)(1,0),若方程f(x)-kx=0無(wú)實(shí)根,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB=b.
(Ⅰ)求角A的大;
(Ⅱ)若a=5,b+c=7,求△ABC的面積.(改編題)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2cos(2x+
π
2
)
是( 。
A、.周期為π的偶函數(shù)
B、.周期為2π的偶函數(shù)
C、.周期為π的奇函數(shù)
D、周期為2π的奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一圓盤(pán),其中陰影部分的圓心角為45°,向圓盤(pán)內(nèi)投鏢,如果某人每次都投入圓盤(pán)內(nèi),那么他投中陰影部分的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖半圓O的直徑為2,A點(diǎn)在直徑的延長(zhǎng)線(xiàn)上,且OA=2,B點(diǎn)為半圓周上的任意一點(diǎn),以AB為邊作一個(gè)等邊△ABC,問(wèn)B點(diǎn)在什么位置時(shí),四邊形OABC的面積最大?并求出此時(shí)的四邊形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)(4,a)在y=x
1
2
的圖象上,則tan
a
6
π的值為(  )
A、0
B、
3
3
C、1
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案