雙曲線=1(a>0,b>0)的右焦點(diǎn)是拋物線y2=8x的焦點(diǎn)F,兩曲線的一個(gè)公共點(diǎn)為P,且|PF| =5,則此雙曲線的離心率為( )

A. B. C.2 D.

 

C

【解析】

試題分析:,根據(jù)拋物線的焦半徑公式知:,,代入得,

代入雙曲線方程,,解得:,,,故選C.

考點(diǎn):雙曲線與拋物線的性質(zhì)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,直角梯形ABCD中,A=90°,B=45°,底邊AB=5,高AD=3,點(diǎn)E由B沿折線BCD向點(diǎn)D移動(dòng),EMAB于M,ENAD于N,設(shè)BM=,矩形AMEN的面積為,那么的函數(shù)關(guān)系的圖像大致是( )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,函數(shù)(其中,)與坐標(biāo)軸的三個(gè)交點(diǎn)、、滿足,,的中點(diǎn),, 則的值為_(kāi)___________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省宜春市高三考前模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且(2b+c)cosA十a(chǎn)cosC =0。

(1)求角A的大。

(2)求的最大值,并求取得最大值時(shí)角B、C的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省宜春市高三考前模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且直線BD相切的圓內(nèi)運(yùn)動(dòng),,則的取值范圍是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省宜春市高三考前模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).

(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;

(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f’(x),若存在唯一的實(shí)數(shù)x0,使得f(x0)=x0與f′(x0)=0同時(shí)成立,求實(shí)數(shù)b的取值范圍;

(3)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省宜春市高三考前模擬文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知,且,則 = 。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省南昌市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知正方形的邊長(zhǎng)為,點(diǎn)分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得

(1)求五棱錐的體積;

(2)求平面與平面的夾角.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省高三聯(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xoy中,以點(diǎn)P為圓心的圓與圓x2+y2-2y=0外切且與x軸相切(兩切點(diǎn)不重合).

(1)求動(dòng)點(diǎn)P的軌跡方程;

(2)若直線mx一y+2m+5=0(m∈R)與點(diǎn)P的軌跡交于A、B兩點(diǎn),問(wèn):當(dāng)m變化時(shí),以線段AB為直徑的圓是否會(huì)經(jīng)過(guò)定點(diǎn)?若會(huì),求出此定點(diǎn);若不會(huì),說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案