17.A={1,2},B={2,3,4}.則A∩B={2}.

分析 利用交集的定義直接求解.

解答 解:∵A={1,2},B={2,3,4},
∴A∩B={2}.
故答案為:{2}.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)f(x)=(a-x)ex-1.
(Ⅰ)當(dāng)x>0時(shí),f(x)<0,求實(shí)數(shù)a的最大值;
(Ⅱ)設(shè)$g(x)=\frac{{{e^x}-1}}{x}$,x1=1,${e^{{x_{n+1}}}}=g({x_n})({n∈{N^*}})$,證明${x_n}>{x_{n+1}}>\frac{1}{2^n}({n∈{N^*}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若2a=5b=100,則$\frac{1}{a}+\frac{1}$( 。
A.1B.2C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.某城市環(huán)保部門(mén)隨機(jī)抽取了一居民區(qū)去年20天PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表:
組別PM2.5濃度(微克/立方米)頻數(shù)(天)頻率
第一組(0,25]30.15
第二組(25,50]120.6
第三組(50,75]30.15
第四組(75,100)20.1
(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$\overrightarrow{OA}$=(1,2,3),$\overrightarrow{OB}$=(2,1,2),$\overrightarrow{OC}$=(1,1,2),點(diǎn)M在直線OC上運(yùn)動(dòng),則$\overrightarrow{MA}$•$\overrightarrow{MB}$的最小值為$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=2x2-lnx,x∈(0,+∞)的單調(diào)減區(qū)間為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知△ABC的三個(gè)內(nèi)角A、B、C成等差數(shù)列,它們的對(duì)邊分別為a,b,c,且滿足a:b=$\sqrt{2}$:$\sqrt{3}$,c=2.
(1)求A、B、C;
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.點(diǎn)B($\sqrt{3}$,0,0)是點(diǎn)A(m,2,5)在x軸上的射影,則點(diǎn)A到原點(diǎn)的距離為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,∠C=$\frac{π}{2}$,∠B=$\frac{π}{6}$,AC=2,M為AB中點(diǎn),將△ACM沿CM折起,使A,B之間的距離為2$\sqrt{2}$,則三棱錐M-ABC的外接球的表面積為16π.

查看答案和解析>>

同步練習(xí)冊(cè)答案